論文の概要: Quantum Machine Learning Algorithms for Anomaly Detection: a Survey
- arxiv url: http://arxiv.org/abs/2408.11047v1
- Date: Tue, 20 Aug 2024 17:55:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:45:00.583857
- Title: Quantum Machine Learning Algorithms for Anomaly Detection: a Survey
- Title(参考訳): 異常検出のための量子機械学習アルゴリズム:サーベイ
- Authors: Sebastiano Corli, Lorenzo Moro, Daniele Dragoni, Massimiliano Dispenza, Enrico Prati,
- Abstract要約: 量子コンピューティングに関わる重要な概念を要約し、量子スピードアップという形式的な概念を導入する。
このサーベイは、量子機械学習に基づく異常検出の構造化マップを提供する。
- 参考スコア(独自算出の注目度): 1.747623282473278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of quantum computers has justified the development of quantum machine learning algorithms , based on the adaptation of the principles of machine learning to the formalism of qubits. Among such quantum algorithms, anomaly detection represents an important problem crossing several disciplines from cybersecurity, to fraud detection to particle physics. We summarize the key concepts involved in quantum computing, introducing the formal concept of quantum speed up. The survey provides a structured map of anomaly detection based on quantum machine learning. We have grouped existing algorithms according to the different learning methods, namely quantum supervised, quantum unsupervised and quantum reinforcement learning, respectively. We provide an estimate of the hardware resources to provide sufficient computational power in the future. The survey provides a systematic and compact understanding of the techniques belonging to each category. We eventually provide a discussion on the computational complexity of the learning methods in real application domains.
- Abstract(参考訳): 量子コンピュータの出現は、量子ビットの形式化への機械学習の原則の適応に基づく量子機械学習アルゴリズムの開発を正当化した。
このような量子アルゴリズムの中で、異常検出はサイバーセキュリティから不正検出、粒子物理学まで、いくつかの分野にまたがる重要な問題である。
量子コンピューティングに関わる重要な概念を要約し、量子スピードアップという形式的な概念を導入する。
このサーベイは、量子機械学習に基づく異常検出の構造化マップを提供する。
我々は、それぞれ異なる学習方法、すなわち量子教師付き学習、量子教師なし学習、および量子強化学習に基づいて、既存のアルゴリズムをグループ化した。
将来、十分な計算能力を提供するため、ハードウェアリソースの推定を行う。
この調査は、各カテゴリに属するテクニックの体系的かつコンパクトな理解を提供する。
最終的に、実際のアプリケーション領域における学習手法の計算複雑性について論じる。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance [8.050429258747256]
量子機械学習の分野で登場した様々な概念について、包括的で偏見のないレビューを提供する。
本稿では,量子機械学習に関連する基本概念,アルゴリズム,統計的学習理論について概説する。
論文 参考訳(メタデータ) (2024-01-21T00:19:16Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
本稿では,量子位相認識問題における量子学習アルゴリズムのパワーについて考察する。
我々は, 対称性保護位相と対称性破壊位相の認識を含む, 様々な問題に対して, アルゴリズムを数値的にベンチマークする。
本結果は,多粒子系における量子位相遷移の予測における量子機械学習の能力を強調した。
論文 参考訳(メタデータ) (2021-11-15T06:17:52Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
行列積や距離推定といったタスクを解くために量子アルゴリズムを導入する。
これらの結果は、教師なし機械学習のための新しい量子アルゴリズムの開発に使用される。
また、ニューラルネットワークやディープラーニングのための新しい量子アルゴリズムも提示します。
論文 参考訳(メタデータ) (2021-11-05T16:36:09Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Fair Machine Learning [1.8275108630751844]
古典と量子フェアの機械学習アルゴリズムの違いと類似点の比較分析を行った。
本稿では,Groverの探索アルゴリズムを用いた量子フェア機械学習における最初の結果を示す。
正準リプシッツ条件の個々の公正度基準を量子メトリクスを用いて量子設定に拡張する。
論文 参考訳(メタデータ) (2021-02-01T10:36:46Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
我々は、雑音に対する量子機械学習アルゴリズムの検証と解析のための正式なフレームワークを定義する。
堅牢な境界が導出され、量子機械学習アルゴリズムが量子トレーニングデータに対して堅牢であるか否かを確認するアルゴリズムが開発された。
我々のアプローチはGoogleのQuantum分類器に実装されており、ノイズの小さな乱れに関して量子機械学習アルゴリズムの堅牢性を検証することができる。
論文 参考訳(メタデータ) (2020-08-17T11:56:23Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
小型地震インバージョン問題を解決するために,D波量子アニールに量子アルゴリズムを適用した。
量子コンピュータによって達成される精度は、少なくとも古典的コンピュータと同程度である。
論文 参考訳(メタデータ) (2020-05-06T14:18:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。