Stabilizer codes for Heisenberg-limited many-body Hamiltonian estimation
- URL: http://arxiv.org/abs/2408.11101v1
- Date: Tue, 20 Aug 2024 18:00:09 GMT
- Title: Stabilizer codes for Heisenberg-limited many-body Hamiltonian estimation
- Authors: Santanu Bosu Antu, Sisi Zhou,
- Abstract summary: We study the performance of stabilizer quantum error correcting codes in estimating many-body Hamiltonians under noise.
We showcase three families of stabilizer codes that achieve the scalings of $(nt)-1$, $(n2t)-1$ and $(n3t)-1$, respectively.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating many-body Hamiltonians has wide applications in quantum technology. By allowing coherent evolution of quantum systems and entanglement across multiple probes, the precision of estimating a fully connected $k$-body interaction can scale up to $(n^kt)^{-1}$, where $n$ is the number of probes and $t$ is the probing time. However, the optimal scaling may no longer be achievable under quantum noise, and it is important to apply quantum error correction in order to recover this limit. In this work, we study the performance of stabilizer quantum error correcting codes in estimating many-body Hamiltonians under noise. When estimating a fully connected $ZZZ$ interaction under single-qubit noise, we showcase three families of stabilizer codes -- thin surface codes, quantum Reed--Muller codes and Shor codes -- that achieve the scalings of $(nt)^{-1}$, $(n^2t)^{-1}$ and $(n^3t)^{-1}$, respectively, all of which are optimal with $t$. We further discuss the relation between stabilizer structure and the scaling with $n$, and identify several no-go theorems. For instance, we find codes with constant-weight stabilizer generators can at most achieve the $n^{-1}$ scaling, while the optimal $n^{-3}$ scaling is achievable if and only if the code bears a repetition code substructure, like in Shor code.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Entanglement-assisted Quantum Error Correcting Code Saturating The Classical Singleton Bound [44.154181086513574]
We introduce a construction for entanglement-assisted quantum error-correcting codes (EAQECCs) that saturates the classical Singleton bound with less shared entanglement than any known method for code rates below $ frackn = frac13 $.
We demonstrate that any classical $[n,k,d]_q$ code can be transformed into an EAQECC with parameters $[n,k,d;2k]]_q$ using $2k$ pre-shared maximally entangled pairs.
arXiv Detail & Related papers (2024-10-05T11:56:15Z) - Creating entangled logical qubits in the heavy-hex lattice with topological codes [0.0]
In this work we show how this bug can be turned into a feature.
We demonstrate entanglement between logical qubits with code distance up to $d = 4$.
We verify the violation of Bell's inequality for both the $d=2$ case with post selection featuring a fidelity of $94%$.
arXiv Detail & Related papers (2024-04-24T17:02:35Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Multiparameter simultaneous optimal estimation with an SU(2) coding
unitary evolution [5.789743084845758]
In a ubiquitous $SU(2)$ dynamics, achieving the simultaneous optimal estimation of multiple parameters is difficult.
We propose a method, characterized by the nested cross-products of the coefficient vector $mathbfX$ of $SU(2)$ generators.
Our work reveals that quantum control is not always functional in improving the estimation precision.
arXiv Detail & Related papers (2022-02-08T06:05:20Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Heisenberg-limited quantum phase estimation of multiple eigenvalues with
few control qubits [1.6328866317851185]
We show that single-control qubit variants of quantum phase estimation can achieve the Heisenberg limit, em also when one is unable to prepare eigenstates of the system.
We present numerical evidence that using the matrix pencil technique the algorithm can achieve Heisenberg-limited scaling as well.
arXiv Detail & Related papers (2021-07-09T18:00:10Z) - Describing quantum metrology with erasure errors using weight
distributions of classical codes [9.391375268580806]
We consider using quantum probe states with a structure that corresponds to classical $[n,k,d]$ binary block codes of minimum distance.
We obtain bounds on the ultimate precision that these probe states can give for estimating the unknown magnitude of a classical field.
arXiv Detail & Related papers (2020-07-06T16:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.