論文の概要: Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry
- arxiv url: http://arxiv.org/abs/2408.11126v1
- Date: Tue, 20 Aug 2024 18:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 21:16:53.904857
- Title: Binocular Model: A deep learning solution for online melt pool temperature analysis using dual-wavelength Imaging Pyrometry
- Title(参考訳): 両眼モデル:デュアル波長イメージング熱量計を用いたオンラインメルトプール温度解析のための深層学習ソリューション
- Authors: Javid Akhavan, Chaitanya Krishna Vallabh, Xianyun Zhao, Souran Manoochehri,
- Abstract要約: 金属添加物製造(AM)において, メルトプール(MP)の温度監視は, 部品品質, プロセス安定性, 欠陥防止, プロセス全体の最適化の確保に不可欠である。
従来の手法は収束が遅く、データを実行可能な洞察に変換するために広範囲な手作業を必要とする。
本稿では,手作業によるデータ処理依存を減らすことを目的とした人工知能(AI)ベースのソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In metal Additive Manufacturing (AM), monitoring the temperature of the Melt Pool (MP) is crucial for ensuring part quality, process stability, defect prevention, and overall process optimization. Traditional methods, are slow to converge and require extensive manual effort to translate data into actionable insights, rendering them impractical for real-time monitoring and control. To address this challenge, we propose an Artificial Intelligence (AI)-based solution aimed at reducing manual data processing reliance and improving the efficiency of transitioning from data to insight. In our study, we utilize a dataset comprising dual-wavelength real-time process monitoring data and corresponding temperature maps. We introduce a deep learning model called the "Binocular model," which exploits dual input observations to perform a precise analysis of MP temperature in Laser Powder Bed Fusion (L-PBF). Through advanced deep learning techniques, we seamlessly convert raw data into temperature maps, significantly streamlining the process and enabling batch processing at a rate of up to 750 frames per second, approximately 1000 times faster than conventional methods. Our Binocular model achieves high accuracy in temperature estimation, evidenced by a 0.95 R-squared score, while simultaneously enhancing processing efficiency by a factor of $\sim1000x$ times. This model directly addresses the challenge of real-time MP temperature monitoring and offers insights into the encountered constraints and the benefits of our Deep Learning-based approach. By combining efficiency and precision, our work contributes to the advancement of temperature monitoring in L-PBF, thus driving progress in the field of metal AM.
- Abstract(参考訳): 金属添加物製造(AM)において, メルトプール(MP)の温度監視は, 部品品質, プロセス安定性, 欠陥防止, プロセス全体の最適化の確保に不可欠である。
従来の手法は収束が遅く、データを実行可能な洞察に変換するために広範囲な手作業が必要であり、リアルタイムの監視と制御には実用的ではない。
この課題に対処するために,手作業によるデータ処理の信頼性の低減と,データから洞察への遷移効率の向上を目的とした人工知能(AI)ベースのソリューションを提案する。
本研究では,2波長リアルタイムプロセス監視データと対応する温度マップからなるデータセットを利用する。
レーザー粉体融合(L-PBF)におけるMP温度の高精度な解析を行うために,双対入力観測を利用した深層学習モデル「双眼鏡モデル」を導入する。
先進的な深層学習技術により、生データを温度マップにシームレスに変換し、プロセスを大幅に合理化し、バッチ処理を1秒あたり750フレームまで、従来の手法の約1000倍の速度で行えるようにした。
我々の両眼モデルでは、0.95R二乗スコアで証明された温度推定の精度が向上し、同時に処理効率を$\sim1000x$倍に向上させる。
このモデルは、リアルタイムMP温度モニタリングの課題に直接対処し、遭遇した制約とディープラーニングベースのアプローチの利点についての洞察を提供する。
本研究は, 効率と精度を組み合わせることにより, L-PBFの温度モニタリングの進展に寄与し, 金属AM分野の進展を推し進める。
関連論文リスト
- Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
デジタルツイン(DT)は、現実世界の物理的プロセスの仮想ツインとして振る舞う。
L-PBFプロセスの閉ループフィードバック制御のためのディープ・ニューラル演算子を用いたDTの計算フレームワークを提案する。
開発したDTは、AMプロセスのガイドと高品質製造の促進を目的としている。
論文 参考訳(メタデータ) (2024-05-13T03:53:46Z) - ThermoPore: Predicting Part Porosity Based on Thermal Images Using Deep Learning [4.498477459271036]
本稿では,レーザー粉体融合法で作製した試料中の擬似ポロシティの定量化と局在化のための深層学習手法を提案する。
私たちの目標は、ビルド中に取得した熱画像に基づいて、パーツのリアルタイムポロシティマップを構築することです。
論文 参考訳(メタデータ) (2024-04-23T19:56:11Z) - TDIP: Tunable Deep Image Processing, a Real Time Melt Pool Monitoring Solution [3.7654908672182072]
製造プロセス中のメルトプール(MP)シグネチャには、プロセスのダイナミクスと品質に関する重要な情報が含まれている。
この情報を得るために、高速カメラベースの視覚モジュールのような様々な感覚的アプローチがオンライン製造監視に用いられている。
本稿では,Tunable Deep Image Processing (TDIP) 方式の実装を提案する。
論文 参考訳(メタデータ) (2024-03-26T21:47:24Z) - Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
Training [58.20089993899729]
本稿では,直感的で効果的な階層学習手法であるTempBalanceを提案する。
我々は、TempBalanceが通常のSGDと注意深く調整されたスペクトルノルム正規化より著しく優れていることを示す。
また、TempBalanceは最先端のメトリクスやスケジューラよりも優れています。
論文 参考訳(メタデータ) (2023-12-01T05:38:17Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
我々は,物理インフォームドニューラルネットワークを用いたAMプロセスのハイブリッドなデータ駆動熱モデリング手法を開発した。
赤外線カメラから測定された部分観測温度データと物理法則を組み合わせることで、全球温度履歴を予測する。
その結果,ハイブリッド熱モデルでは未知のパラメータを効果的に同定し,フルフィールド温度を正確に把握できることがわかった。
論文 参考訳(メタデータ) (2022-06-15T18:27:10Z) - Physics-based Learning of Parameterized Thermodynamics from Real-time
Thermography [0.0]
実時間サーモグラフィデータから熱過程のダイナミクスを学習するための物理に基づく新しいアプローチを提案する。
提案手法は雑音に対して頑健であり,パラメータ推定の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-24T16:06:31Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
赤外線(IR)カメラは、照明条件や照明条件が悪ければ頑丈である。
既存のUDA手法を改善するためのアルゴリズムメタ学習フレームワークを提案する。
KAISTおよびDSIACデータセットのための最先端熱検出器を作成した。
論文 参考訳(メタデータ) (2021-10-07T02:28:18Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。