MS$^3$D: A RG Flow-Based Regularization for GAN Training with Limited Data
- URL: http://arxiv.org/abs/2408.11135v1
- Date: Tue, 20 Aug 2024 18:37:37 GMT
- Title: MS$^3$D: A RG Flow-Based Regularization for GAN Training with Limited Data
- Authors: Jian Wang, Xin Lan, Yuxin Tian, Jiancheng Lv,
- Abstract summary: We propose a novel regularization method based on the idea of renormalization group (RG) in physics.
We show that our method can effectively enhance the performance and stability of GANs under limited data scenarios.
- Score: 16.574346252357653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative adversarial networks (GANs) have made impressive advances in image generation, but they often require large-scale training data to avoid degradation caused by discriminator overfitting. To tackle this issue, we investigate the challenge of training GANs with limited data, and propose a novel regularization method based on the idea of renormalization group (RG) in physics.We observe that in the limited data setting, the gradient pattern that the generator obtains from the discriminator becomes more aggregated over time. In RG context, this aggregated pattern exhibits a high discrepancy from its coarse-grained versions, which implies a high-capacity and sensitive system, prone to overfitting and collapse. To address this problem, we introduce a \textbf{m}ulti-\textbf{s}cale \textbf{s}tructural \textbf{s}elf-\textbf{d}issimilarity (MS$^3$D) regularization, which constrains the gradient field to have a consistent pattern across different scales, thereby fostering a more redundant and robust system. We show that our method can effectively enhance the performance and stability of GANs under limited data scenarios, and even allow them to generate high-quality images with very few data.
Related papers
- ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation [0.9374652839580181]
We introduce a robust framework aimed at addressing and mitigating these issues effectively.
This framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs.
We introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series.
arXiv Detail & Related papers (2024-09-21T04:51:35Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - BFRFormer: Transformer-based generator for Real-World Blind Face
Restoration [37.77996097891398]
We propose a Transformer-based blind face restoration method, named BFRFormer, to reconstruct images with more identity-preserved details in an end-to-end manner.
Our method outperforms state-of-the-art methods on a synthetic dataset and four real-world datasets.
arXiv Detail & Related papers (2024-02-29T02:31:54Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Latent Space is Feature Space: Regularization Term for GANs Training on
Limited Dataset [1.8634083978855898]
I proposed an additional structure and loss function for GANs called LFM, trained to maximize the feature diversity between the different dimensions of the latent space.
In experiments, this system has been built upon DCGAN and proved to have improvement on Frechet Inception Distance (FID) training from scratch on CelebA dataset.
arXiv Detail & Related papers (2022-10-28T16:34:48Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.