ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation
- URL: http://arxiv.org/abs/2409.14013v1
- Date: Sat, 21 Sep 2024 04:51:35 GMT
- Title: ChronoGAN: Supervised and Embedded Generative Adversarial Networks for Time Series Generation
- Authors: MohammadReza EskandariNasab, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi,
- Abstract summary: We introduce a robust framework aimed at addressing and mitigating these issues effectively.
This framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs.
We introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series.
- Score: 0.9374652839580181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating time series data using Generative Adversarial Networks (GANs) presents several prevalent challenges, such as slow convergence, information loss in embedding spaces, instability, and performance variability depending on the series length. To tackle these obstacles, we introduce a robust framework aimed at addressing and mitigating these issues effectively. This advanced framework integrates the benefits of an Autoencoder-generated embedding space with the adversarial training dynamics of GANs. This framework benefits from a time series-based loss function and oversight from a supervisory network, both of which capture the stepwise conditional distributions of the data effectively. The generator functions within the latent space, while the discriminator offers essential feedback based on the feature space. Moreover, we introduce an early generation algorithm and an improved neural network architecture to enhance stability and ensure effective generalization across both short and long time series. Through joint training, our framework consistently outperforms existing benchmarks, generating high-quality time series data across a range of real and synthetic datasets with diverse characteristics.
Related papers
- SeriesGAN: Time Series Generation via Adversarial and Autoregressive Learning [0.9374652839580181]
We introduce an advanced framework that integrates the advantages of an autoencoder-generated embedding space with the adversarial training dynamics of GANs.
This method employs two discriminators: one to specifically guide the generator and another to refine both the autoencoder's and generator's output.
Our framework excels at generating high-fidelity time series data, consistently outperforming existing state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-10-28T16:49:03Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.
We introduce a novel quantization framework that includes three strategies.
This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
Time series data is characterized by its intrinsic long and short-range dependencies.
We introduce a novel Time Series Lightweight Network (TSLANet) as a universal convolutional model for diverse time series tasks.
Our experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2024-04-12T13:41:29Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - PCF-GAN: generating sequential data via the characteristic function of measures on the path space [3.9983665898166425]
PCF-GAN is a novel GAN that incorporates the path characteristic function (PCF) as the principled representation of time series distribution into the discriminator.
We show that PCF-GAN consistently outperforms state-of-the-art baselines in both generation and reconstruction quality.
arXiv Detail & Related papers (2023-05-21T17:05:03Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
We propose a novel generative framework for time series data generation - RTSGAN.
RTSGAN learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector.
To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder.
arXiv Detail & Related papers (2021-11-16T11:31:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.