CoDi: Conversational Distillation for Grounded Question Answering
- URL: http://arxiv.org/abs/2408.11219v1
- Date: Tue, 20 Aug 2024 22:35:47 GMT
- Title: CoDi: Conversational Distillation for Grounded Question Answering
- Authors: Patrick Huber, Arash Einolghozati, Rylan Conway, Kanika Narang, Matt Smith, Waqar Nayyar, Adithya Sagar, Ahmed Aly, Akshat Shrivastava,
- Abstract summary: We introduce a novel data distillation framework named CoDi.
CoDi allows us to synthesize large-scale, assistant-style datasets in a steerable and diverse manner.
We show that SLMs trained with CoDi-synthesized data achieve performance comparable to models trained on human-annotated data in standard metrics.
- Score: 10.265241619616676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distilling conversational skills into Small Language Models (SLMs) with approximately 1 billion parameters presents significant challenges. Firstly, SLMs have limited capacity in their model parameters to learn extensive knowledge compared to larger models. Secondly, high-quality conversational datasets are often scarce, small, and domain-specific. Addressing these challenges, we introduce a novel data distillation framework named CoDi (short for Conversational Distillation, pronounced "Cody"), allowing us to synthesize large-scale, assistant-style datasets in a steerable and diverse manner. Specifically, while our framework is task agnostic at its core, we explore and evaluate the potential of CoDi on the task of conversational grounded reasoning for question answering. This is a typical on-device scenario for specialist SLMs, allowing for open-domain model responses, without requiring the model to "memorize" world knowledge in its limited weights. Our evaluations show that SLMs trained with CoDi-synthesized data achieve performance comparable to models trained on human-annotated data in standard metrics. Additionally, when using our framework to generate larger datasets from web data, our models surpass larger, instruction-tuned models in zero-shot conversational grounded reasoning tasks.
Related papers
- GenQA: Generating Millions of Instructions from a Handful of Prompts [67.54980063851605]
Most public instruction finetuning datasets are relatively small compared to the closed source datasets used to train industry models.
In this work, we study methods for generating large instruction datasets from a single prompt.
Our dataset meets or exceeds both WizardLM and Ultrachat on both knowledge-intensive leaderboard tasks as well as conversational evaluations.
arXiv Detail & Related papers (2024-06-14T17:44:08Z) - LUCID: LLM-Generated Utterances for Complex and Interesting Dialogues [38.6183579217801]
Virtual assistants are poised to take a leap forward in terms of their dialogue capabilities.
Yet a major bottleneck to achieving genuinely transformative task-oriented dialogue capabilities remains the scarcity of high quality data.
We use LUCID to generate a seed dataset of 4,277 conversations across 100 intents to demonstrate its capabilities.
arXiv Detail & Related papers (2024-03-01T11:33:53Z) - Enhancing Chat Language Models by Scaling High-quality Instructional
Conversations [91.98516412612739]
We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat.
Our objective is to capture the breadth of interactions that a human might have with an AI assistant.
We fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA.
arXiv Detail & Related papers (2023-05-23T16:49:14Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Advanced Conditional Variational Autoencoders (A-CVAE): Towards
interpreting open-domain conversation generation via disentangling latent
feature representation [15.742077523458995]
This paper proposes to harness the generative model with a priori knowledge through a cognitive approach involving mesoscopic scale feature disentanglement.
We propose a new metric for open-domain dialogues, which can objectively evaluate the interpretability of the latent space distribution.
arXiv Detail & Related papers (2022-07-26T07:39:36Z) - TANet: Thread-Aware Pretraining for Abstractive Conversational
Summarization [27.185068253347257]
We build a large-scale (11M) pretraining dataset called RCS based on the multi-person discussions in the Reddit community.
We then present TANet, a thread-aware Transformer-based network.
Unlike the existing pre-trained models that treat a conversation as a sequence of sentences, we argue that the inherent contextual dependency plays an essential role in understanding the entire conversation.
arXiv Detail & Related papers (2022-04-09T16:08:46Z) - Impact of Dataset on Acoustic Models for Automatic Speech Recognition [0.0]
In Automatic Speech Recognition, GMM-HMM had been widely used for acoustic modelling.
The GMM models are widely used to create the alignments of the training data for the hybrid deep neural network model.
This work aims to investigate the impact of dataset size variations on the performance of various GMM-HMM Acoustic Models.
arXiv Detail & Related papers (2022-03-25T11:41:49Z) - Low-Resource Knowledge-Grounded Dialogue Generation [74.09352261943913]
We consider knowledge-grounded dialogue generation under a natural assumption that only limited training examples are available.
We devise a disentangled response decoder in order to isolate parameters that depend on knowledge-grounded dialogues from the entire generation model.
With only 1/8 training data, our model can achieve the state-of-the-art performance and generalize well on out-of-domain knowledge.
arXiv Detail & Related papers (2020-02-24T16:20:32Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue.
We show that previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history.
We present methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters.
arXiv Detail & Related papers (2020-01-17T14:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.