論文の概要: Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery
- arxiv url: http://arxiv.org/abs/2408.11234v1
- Date: Tue, 20 Aug 2024 23:15:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:58:50.501343
- Title: Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery
- Title(参考訳): 高分解能・マルチセンサ衛星画像からの地上バイオマス・キャノピー高さ・カバーのグローバル予測のための統一深層学習モデル
- Authors: Manuel Weber, Carly Beneke, Clyde Wheeler,
- Abstract要約: 地表面バイオマス密度 (AGBD) , キャノピー高さ (CH) , キャノピー被覆 (CC) の予測を統一する深層学習モデルと10mのマルチセンサ・マルチスペクトル画像を用いた新しい手法を提案する。
GEDI-L2/L4を世界数百万のサンプルで測定し、2023年と2016年から2023年までの期間に全世界に展開することで、モデルの有効性を検証した。
- 参考スコア(独自算出の注目度): 0.196629787330046
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Regular measurement of carbon stock in the world's forests is critical for carbon accounting and reporting under national and international climate initiatives, and for scientific research, but has been largely limited in scalability and temporal resolution due to a lack of ground based assessments. Increasing efforts have been made to address these challenges by incorporating remotely sensed data. We present a new methodology which uses multi-sensor, multi-spectral imagery at a resolution of 10 meters and a deep learning based model which unifies the prediction of above ground biomass density (AGBD), canopy height (CH), canopy cover (CC) as well as uncertainty estimations for all three quantities. The model is trained on millions of globally sampled GEDI-L2/L4 measurements. We validate the capability of our model by deploying it over the entire globe for the year 2023 as well as annually from 2016 to 2023 over selected areas. The model achieves a mean absolute error for AGBD (CH, CC) of 26.1 Mg/ha (3.7 m, 9.9 %) and a root mean squared error of 50.6 Mg/ha (5.4 m, 15.8 %) on a globally sampled test dataset, demonstrating a significant improvement over previously published results. We also report the model performance against independently collected ground measurements published in the literature, which show a high degree of correlation across varying conditions. We further show that our pre-trained model facilitates seamless transferability to other GEDI variables due to its multi-head architecture.
- Abstract(参考訳): 世界の森林における炭素ストックの定期的な測定は、国内外の気候イニシアチブの下での炭素会計と報告、科学研究において重要であるが、地上ベースの評価が欠如しているため、スケーラビリティと時間的解決に大きく制限されている。
リモートセンシングされたデータを組み込むことで、これらの課題に対処する努力が増加している。
10mの解像度でマルチセンサ・マルチスペクトル画像を利用する新しい手法と、地上のバイオマス密度(AGBD)、キャノピー高さ(CH)、キャノピーカバー(CC)、および3つの量に対する不確実性推定を統一するディープラーニングベースモデルを提案する。
このモデルは、世界中の何百万ものGEDI-L2/L4測定に基づいて訓練されている。
我々は、2016年から2023年までの毎年、選ばれた地域に対して、2023年の間、世界中にデプロイすることで、モデルの有効性を検証する。
このモデルは、AGBD (CH, CC) の26.1 Mg/ha (3.7 m, 9.9 %) の平均絶対誤差と、グローバルにサンプリングされたテストデータセット上で50.6 Mg/ha (5.4 m, 15.8 %) の平均2乗誤差を達成し、これまでに公表された結果よりも大幅に改善されている。
また,本論文に掲載されている個別の地中測定値に対するモデル性能について報告する。
さらに,事前学習モデルにより,そのマルチヘッドアーキテクチャにより,他のGEDI変数へのシームレスな転送が容易であることを示す。
関連論文リスト
- A Deep Learning Approach to Estimate Canopy Height and Uncertainty by Integrating Seasonal Optical, SAR and Limited GEDI LiDAR Data over Northern Forests [0.0]
本研究では,空間連続高分解能キャノピー高さと不確実性推定を生成する手法を提案する。
我々は、Sentinel-1、Landsat、ALOS-PALSAR-2のマルチソース・マルチシーズン衛星データと、GEDI LiDARを基準データとして統合する。
夏のみのデータの代わりに季節データを使用することで、変動率が10%向上し、エラーが0.45m減少し、バイアスが1m低下した。
論文 参考訳(メタデータ) (2024-10-08T20:27:11Z) - 3D-SAR Tomography and Machine Learning for High-Resolution Tree Height Estimation [4.1942958779358674]
バイオマス計算の鍵となる木の高さは、合成開口レーダ(SAR)技術を用いて測定することができる。
本研究では,2つのSAR製品から森林高度データを抽出するために機械学習を適用した。
我々は,ドイツのアイフェル国立公園のSARおよびLiDARデータを含むTtomoSenseデータセットを用いて,標高推定モデルの開発と評価を行った。
論文 参考訳(メタデータ) (2024-09-09T14:07:38Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning [1.6889377382676625]
我々は、自由に利用可能な衛星画像について、個々の低木デラインの大規模なデータセットをリリースする。
我々は、すべてのジュニパーを、全生物圏保護区のツリーライン上にマッピングするために、インスタンスセグメンテーションモデルを使用します。
我々のモデルは、PIデータで87.87%、FWデータで76.86%の低木でF1スコアを達成した。
論文 参考訳(メタデータ) (2024-01-31T16:44:20Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Strict baselines for Covid-19 forecasting and ML perspective for USA and
Russia [105.54048699217668]
Covid-19は、2年間にわたって蓄積されたデータセットを収集し、予測分析に使用できるようにする。
本研究は、米国とロシアの2カ国の地域データに基づいて、Covid-19の拡散のダイナミクスを予測するための様々な種類の方法に関する一貫した研究結果である。
論文 参考訳(メタデータ) (2022-07-15T18:21:36Z) - High-resolution landscape-scale biomass mapping using a spatiotemporal
patchwork of LiDAR coverages [0.0]
温室効果ガス推定において,森林土壌のバイオマスの微細な評価がますます重要になっている。
ここでは、トレーニングデータの選択、地域的あるいは範囲的な偏見やエラーの調査、複数スケールでのマップパターンなど、一般的な障害に対処する。
我々のモデルは全体として正確であり (% RMSE 13-33%) バイアスが非常に低く (MBE $leq$$pm$5 Mg ha$-1$) 、ほとんどのフィールドオブザーバの変動を説明した。
論文 参考訳(メタデータ) (2022-05-17T17:53:50Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Global canopy height estimation with GEDI LIDAR waveforms and Bayesian
deep learning [20.692092680921274]
NASAのGlobal Ecosystem Dynamics Investigation(GEDI)は、地球規模の炭素循環における森林の役割の理解を深めることを目的としている重要な気候ミッションである。
本稿では,GEDI波形とレグレッション・キャノピー・トップハイトを世界規模で解釈する新しい教師付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T23:08:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。