論文の概要: Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning
- arxiv url: http://arxiv.org/abs/2401.17985v2
- Date: Tue, 01 Oct 2024 08:25:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-02 16:33:36.616561
- Title: Individual mapping of large polymorphic shrubs in high mountains using satellite images and deep learning
- Title(参考訳): 衛星画像と深層学習を用いた高山における大型多形低木の個体マッピング
- Authors: Rohaifa Khaldi, Siham Tabik, Sergio Puertas-Ruiz, Julio Peñas de Giles, José Antonio Hódar Correa, Regino Zamora, Domingo Alcaraz Segura,
- Abstract要約: 我々は、自由に利用可能な衛星画像について、個々の低木デラインの大規模なデータセットをリリースする。
我々は、すべてのジュニパーを、全生物圏保護区のツリーライン上にマッピングするために、インスタンスセグメンテーションモデルを使用します。
我々のモデルは、PIデータで87.87%、FWデータで76.86%の低木でF1スコアを達成した。
- 参考スコア(独自算出の注目度): 1.6889377382676625
- License:
- Abstract: Monitoring the distribution and size of long-living large shrubs, such as junipers, is crucial for assessing the long-term impacts of global change on high-mountain ecosystems. While deep learning models have shown remarkable success in object segmentation, adapting these models to detect shrub species with polymorphic nature remains challenging. In this research, we release a large dataset of individual shrub delineations on freely available satellite imagery and use an instance segmentation model to map all junipers over the treeline for an entire biosphere reserve (Sierra Nevada, Spain). To optimize performance, we introduced a novel dual data construction approach: using photo-interpreted (PI) data for model development and fieldwork (FW) data for validation. To account for the polymorphic nature of junipers during model evaluation, we developed a soft version of the Intersection over Union metric. Finally, we assessed the uncertainty of the resulting map in terms of canopy cover and density of shrubs per size class. Our model achieved an F1-score in shrub delineation of 87.87% on the PI data and 76.86% on the FW data. The R2 and RMSE of the observed versus predicted relationship were 0.63 and 6.67% for canopy cover, and 0.90 and 20.62 for shrub density. The greater density of larger shrubs in lower altitudes and smaller shrubs in higher altitudes observed in the model outputs was also present in the PI and FW data, suggesting an altitudinal uplift in the optimal performance of the species. This study demonstrates that deep learning applied on freely available high-resolution satellite imagery is useful to detect medium to large shrubs of high ecological value at the regional scale, which could be expanded to other high-mountains worldwide and to historical and forthcoming imagery.
- Abstract(参考訳): ジュニパーのような長生きする大型低木の分布と規模をモニタリングすることは、高山生態系に対する世界的変化の長期的影響を評価する上で重要である。
深層学習モデルはオブジェクトセグメンテーションにおいて顕著に成功したが、多形性のある低木種を検出するためにこれらのモデルを適用することは依然として困難である。
本研究では、自由な衛星画像上の個々の低木分布の大規模データセットを公開し、全ジュニパーをツリーライン上にマッピングするインスタンスセグメンテーションモデルを用いて、バイオスフィア保護区全体(スペイン、シエラ・ネバダ)について検討する。
性能を最適化するために、モデル開発やフィールドワーク(FW)データに対する光解釈(PI)データと検証のためのフィールドワーク(FW)データという、新しい二重データ構築手法を導入した。
モデル評価におけるジュニパーの多形性を考慮するため,ユニオン計量を用いたインターセクションのソフトバージョンを開発した。
最後に, 得られた分布図の不確かさを, キャノピー被覆率, クラスごとの低木密度で評価した。
我々のモデルは、PIデータで87.87%、FWデータで76.86%の低木でF1スコアを達成した。
観測されたR2とRMSEは、天蓋被覆では0.63と6.67%、低木密度では0.90と20.62であった。
また, PIおよびFWデータでは, 下層部の低木密度と高層部の低木密度が増加し, 最適性能の利他的上昇が示唆された。
本研究は,高解像度衛星画像に応用された深層学習が,地域規模で高い生態的価値を持つ中~大低木を検出するのに有用であることを示す。
関連論文リスト
- Tree Species Classification using Machine Learning and 3D Tomographic SAR -- a case study in Northern Europe [0.0]
樹木種の分類は、自然保護、森林在庫、森林管理、絶滅危惧種の保護において重要な役割を担っている。
本研究では,SLC(Single-look Complex)画像のスタックを利用した3次元トモグラフィーデータセットであるTtomoSenseを用いた。
論文 参考訳(メタデータ) (2024-11-19T22:25:26Z) - Unified Deep Learning Model for Global Prediction of Aboveground Biomass, Canopy Height and Cover from High-Resolution, Multi-Sensor Satellite Imagery [0.196629787330046]
地表面バイオマス密度 (AGBD) , キャノピー高さ (CH) , キャノピー被覆 (CC) の予測を統一する深層学習モデルと10mのマルチセンサ・マルチスペクトル画像を用いた新しい手法を提案する。
GEDI-L2/L4を世界数百万のサンプルで測定し、2023年と2016年から2023年までの期間に全世界に展開することで、モデルの有効性を検証した。
論文 参考訳(メタデータ) (2024-08-20T23:15:41Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Treesは時系列モデルのパラメータを学習するために設計されている。
対象とする時系列モデルのパラメータを特徴に関連付けることで、Hyper-Treesはパラメータ非定常性の問題にも対処する。
この新しいアプローチでは、木はまず入力特徴から情報表現を生成し、浅いネットワークはターゲットモデルパラメータにマップする。
論文 参考訳(メタデータ) (2024-05-13T15:22:15Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Sub-Meter Tree Height Mapping of California using Aerial Images and
LiDAR-Informed U-Net Model [0.0]
樹冠の高さは、森林のバイオマス、生産性、種多様性の最も重要な指標の1つである。
そこで我々は,カリフォルニアのすべての樹冠の高さを高解像度の空中画像でマッピングするために,回帰に適応したU-Netモデルを用いた。
本モデルでは, 飽和のないキャノピー高さを最大50mまで推定し, 既存のキャノピー高さ製品よりも高い性能を示した。
論文 参考訳(メタデータ) (2023-06-02T22:29:58Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
分類(離散化)と連続損失関数を最適化した新しい視覚変換器(ViT)モデルを提案する。
このモデルは、従来使用されていた畳み込みベースのアプローチ(ConvNet)よりも、連続損失関数のみで最適化された精度が向上する。
論文 参考訳(メタデータ) (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Global canopy height estimation with GEDI LIDAR waveforms and Bayesian
deep learning [20.692092680921274]
NASAのGlobal Ecosystem Dynamics Investigation(GEDI)は、地球規模の炭素循環における森林の役割の理解を深めることを目的としている重要な気候ミッションである。
本稿では,GEDI波形とレグレッション・キャノピー・トップハイトを世界規模で解釈する新しい教師付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T23:08:27Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。