論文の概要: Correlation Analysis of Adversarial Attack in Time Series Classification
- arxiv url: http://arxiv.org/abs/2408.11264v1
- Date: Wed, 21 Aug 2024 01:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:48:55.557906
- Title: Correlation Analysis of Adversarial Attack in Time Series Classification
- Title(参考訳): 時系列分類における逆攻撃の相関解析
- Authors: Zhengyang Li, Wenhao Liang, Chang Dong, Weitong Chen, Dong Huang,
- Abstract要約: 本研究では,時系列分類モデルの攻撃に対する脆弱性について検討した。
攻撃の有効性を高めるため、正規化技術とノイズ導入が示されている。
世界情報を優先するように設計されたモデルは、敵の操作に対する抵抗が大きいことが判明した。
- 参考スコア(独自算出の注目度): 6.117704456424016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the vulnerability of time series classification models to adversarial attacks, with a focus on how these models process local versus global information under such conditions. By leveraging the Normalized Auto Correlation Function (NACF), an exploration into the inclination of neural networks is conducted. It is demonstrated that regularization techniques, particularly those employing Fast Fourier Transform (FFT) methods and targeting frequency components of perturbations, markedly enhance the effectiveness of attacks. Meanwhile, the defense strategies, like noise introduction and Gaussian filtering, are shown to significantly lower the Attack Success Rate (ASR), with approaches based on noise introducing notably effective in countering high-frequency distortions. Furthermore, models designed to prioritize global information are revealed to possess greater resistance to adversarial manipulations. These results underline the importance of designing attack and defense mechanisms, informed by frequency domain analysis, as a means to considerably reinforce the resilience of neural network models against adversarial threats.
- Abstract(参考訳): 本研究では,時系列分類モデルの逆攻撃に対する脆弱性について検討し,これらのモデルがどのように局所的情報とグローバル的情報を処理するかに着目した。
正規化自己相関関数(NACF)を利用することで、ニューラルネットワークの傾きを探索する。
本研究では,特にFast Fourier Transform (FFT) 法を用いて,摂動の周波数成分を標的とした正規化手法により,攻撃の有効性が著しく向上することが実証された。
一方,ノイズ導入やガウスフィルタといった防衛戦略は,高周波数歪み対策に特に有効なノイズ導入に基づくアプローチにより,アタック成功率(ASR)を著しく低下させることが示されている。
さらに,グローバルな情報の優先順位付けを図ったモデルは,敵の操作に対する抵抗が大きいことが判明した。
これらの結果は、敵の脅威に対するニューラルネットワークモデルのレジリエンスを著しく強化する手段として、周波数領域分析によって通知される攻撃と防御メカニズムの設計の重要性を浮き彫りにしている。
関連論文リスト
- Robust VAEs via Generating Process of Noise Augmented Data [9.366139389037489]
本稿では,原データと雑音増大データ間の潜時空間のばらつきを規則化し,ロバスト性を高める新しい枠組みを提案する。
実験により,ロバスト拡張変分オートエンコーダ(RAVEN)と呼ばれるこの手法は,対向入力に対して優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2024-07-26T09:55:34Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Adversarial Purification for Data-Driven Power System Event Classifiers
with Diffusion Models [0.8848340429852071]
ファサー計測ユニット(PMU)のグローバル展開は、電力システムのリアルタイム監視を可能にする。
近年の研究では、機械学習に基づく手法が敵の攻撃に弱いことが示されている。
本稿では,拡散モデルに基づく効果的な対向的浄化手法を提案する。
論文 参考訳(メタデータ) (2023-11-13T06:52:56Z) - Phase-shifted Adversarial Training [8.89749787668458]
反応周波数のレンズによる対向訓練の挙動を解析する。
PhaseATは高周波情報の収束を著しく改善する。
これにより、モデルが各データ付近でスムーズな予測を行うことで、対向ロバスト性を向上させることができる。
論文 参考訳(メタデータ) (2023-01-12T02:25:22Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
本稿では、転送可能な対角干渉に耐えられるディープラーニングモデルからなる新しい受信アーキテクチャを提案する。
本研究では、リカレントニューラルネットワーク(RNN)では30%以上、畳み込みニューラルネットワーク(CNN)では50%以上の性能向上を示す。
論文 参考訳(メタデータ) (2020-11-02T17:12:22Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。