論文の概要: Towards Imperceptible Adversarial Attacks for Time Series Classification with Local Perturbations and Frequency Analysis
- arxiv url: http://arxiv.org/abs/2503.19519v1
- Date: Tue, 25 Mar 2025 10:16:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:18.092253
- Title: Towards Imperceptible Adversarial Attacks for Time Series Classification with Local Perturbations and Frequency Analysis
- Title(参考訳): 局所摂動と周波数解析を用いた時系列分類における非知覚的逆攻撃に向けて
- Authors: Wenwei Gu, Renyi Zhong, Jianping Zhang, Michael R. Lyu,
- Abstract要約: 人間の視覚システム(HVS)によって検出された敵の例は、攻撃を効果的に行うことができない。
本稿では、周波数成分と時系列の局所性に対処して、TSCモデルに対する敵攻撃の非受容性を改善することを目的とする。
- 参考スコア(独自算出の注目度): 28.85076539497076
- License:
- Abstract: Adversarial attacks in time series classification (TSC) models have recently gained attention due to their potential to compromise model robustness. Imperceptibility is crucial, as adversarial examples detected by the human vision system (HVS) can render attacks ineffective. Many existing methods fail to produce high-quality imperceptible examples, often generating perturbations with more perceptible low-frequency components, like square waves, and global perturbations that reduce stealthiness. This paper aims to improve the imperceptibility of adversarial attacks on TSC models by addressing frequency components and time series locality. We propose the Shapelet-based Frequency-domain Attack (SFAttack), which uses local perturbations focused on time series shapelets to enhance discriminative information and stealthiness. Additionally, we introduce a low-frequency constraint to confine perturbations to high-frequency components, enhancing imperceptibility.
- Abstract(参考訳): 時系列分類(TSC)モデルにおける敵対的攻撃は、モデルロバスト性を損なう可能性から最近注目されている。
人間の視覚システム(HVS)によって検出された敵の例は、攻撃を効果的に行うことができない。
既存の多くの手法では、高品質な知覚不可能な例が得られず、しばしば正方形波のようなより知覚しやすい低周波成分の摂動と、ステルス性を減少させる大域摂動を生成する。
本稿では、周波数成分と時系列の局所性に対処して、TSCモデルに対する敵攻撃の非受容性を改善することを目的とする。
本稿では、時系列形状に焦点をあてた局所摂動を用いて、識別情報とステルスネスを高めるシェイプレットベースの周波数ドメイン攻撃(SFAttack)を提案する。
さらに、高周波成分に摂動を限定する低周波制約を導入し、非受容性を高める。
関連論文リスト
- DAT: Improving Adversarial Robustness via Generative Amplitude Mix-up in Frequency Domain [23.678658814438855]
敵の攻撃からディープニューラルネットワーク(DNN)を保護するために、敵の訓練(AT)が開発された。
近年の研究では、敵対的攻撃がサンプルの周波数スペクトルの位相内のパターンに不均等に影響を及ぼすことが示されている。
モデルの堅牢性向上と位相パターンの維持のトレードオフを改善するために, 最適化された逆振幅発生器 (AAG) を提案する。
論文 参考訳(メタデータ) (2024-10-16T07:18:36Z) - Correlation Analysis of Adversarial Attack in Time Series Classification [6.117704456424016]
本研究では,時系列分類モデルの攻撃に対する脆弱性について検討した。
攻撃の有効性を高めるため、正規化技術とノイズ導入が示されている。
世界情報を優先するように設計されたモデルは、敵の操作に対する抵抗が大きいことが判明した。
論文 参考訳(メタデータ) (2024-08-21T01:11:32Z) - Mitigating Low-Frequency Bias: Feature Recalibration and Frequency Attention Regularization for Adversarial Robustness [23.77988226456179]
敵の訓練(AT)は、有望な防衛戦略として現れている。
ATトレーニングされたモデルは、高周波成分を無視しながら、低周波特徴に対するバイアスを示す。
本稿では,周波数特性を戦略的に分離・再分類する新しいモジュールであるHFDRを提案する。
論文 参考訳(メタデータ) (2024-07-04T15:46:01Z) - Towards a Novel Perspective on Adversarial Examples Driven by Frequency [7.846634028066389]
異なる周波数帯域を組み合わせたブラックボックス逆攻撃アルゴリズムを提案する。
複数のデータセットとモデルで実施された実験により、低周波帯域と低周波帯域の高周波成分を組み合わせることで、攻撃効率が著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-16T00:58:46Z) - Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
敵の訓練は、しばしばモデルの堅牢性を高めるために使用される。
我々は、この観測されたロバストネスの利得はロバストネスの錯覚(IOR)であることを示した。
我々は,NLPコミュニティに対して,試験時間温度のスケーリングを堅牢性評価に組み込むよう促す。
論文 参考訳(メタデータ) (2024-02-27T13:49:12Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Frequency Domain Adversarial Training for Robust Volumetric Medical
Segmentation [111.61781272232646]
医療などの重要な応用において、ディープラーニングモデルの堅牢性を確保することが不可欠である。
本稿では,ボリューム医療画像分割モデルに対する3次元周波数領域対逆攻撃について述べる。
論文 参考訳(メタデータ) (2023-07-14T10:50:43Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
理論的および経験的知見を参考に,周波数に基づく対向例の理解について述べる。
分析の結果,逆転例は高周波でも低周波成分でもないが,単にデータセット依存であることがわかった。
本稿では、一般に観測される精度対ロバスト性トレードオフの周波数に基づく説明法を提案する。
論文 参考訳(メタデータ) (2021-10-26T19:12:34Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
本稿では、転送可能な対角干渉に耐えられるディープラーニングモデルからなる新しい受信アーキテクチャを提案する。
本研究では、リカレントニューラルネットワーク(RNN)では30%以上、畳み込みニューラルネットワーク(CNN)では50%以上の性能向上を示す。
論文 参考訳(メタデータ) (2020-11-02T17:12:22Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。