BearLLM: A Prior Knowledge-Enhanced Bearing Health Management Framework with Unified Vibration Signal Representation
- URL: http://arxiv.org/abs/2408.11281v2
- Date: Mon, 16 Dec 2024 03:08:16 GMT
- Title: BearLLM: A Prior Knowledge-Enhanced Bearing Health Management Framework with Unified Vibration Signal Representation
- Authors: Haotian Peng, Jiawei Liu, Jinsong Du, Jie Gao, Wei Wang,
- Abstract summary: We propose a bearing health management framework leveraging large language models (BearLLM)
BearLLM unifies multiple bearing-related tasks by processing user prompts and vibration signals.
We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models.
- Score: 8.401364944653146
- License:
- Abstract: We propose a bearing health management framework leveraging large language models (BearLLM), a novel multimodal model that unifies multiple bearing-related tasks by processing user prompts and vibration signals. Specifically, we introduce a prior knowledge-enhanced unified vibration signal representation to handle various working conditions across multiple datasets. This involves adaptively sampling the vibration signals based on the sampling rate of the sensor, incorporating the frequency domain to unify input dimensions, and using a fault-free reference signal as an auxiliary input. To extract features from vibration signals, we first train a fault classification network, then convert and align the extracted features into word embedding, and finally concatenate these with text embedding as input to an LLM. To evaluate the performance of the proposed method, we constructed the first large-scale multimodal bearing health management (MBHM) dataset, including paired vibration signals and textual descriptions. With our unified vibration signal representation, BearLLM using one set of pre-trained weights achieves state-of-the-art performance on nine publicly available fault diagnosis benchmarks, outperforming specific methods designed for individual datasets. We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models https://github.com/SIA-IDE/BearLLM.
Related papers
- Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection [84.78475642696137]
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models.
We propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS)
SGPS constructs reliable positive pairs for noisy samples to enhance the sample utilization.
arXiv Detail & Related papers (2025-01-19T14:41:55Z) - FD-LLM: Large Language Model for Fault Diagnosis of Machines [20.679299204776527]
This study introduces a novel IFD approach by effectively adapting large language models to numerical data inputs for identifying faults from time-series sensor data.
We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem.
We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions.
arXiv Detail & Related papers (2024-12-02T07:36:35Z) - VSLLaVA: a pipeline of large multimodal foundation model for industrial vibration signal analysis [17.401380489591087]
This paper presents a pipeline named VSLLaVA that leverages a large language model to integrate expert knowledge for identification of signal parameters and diagnosis of faults.
The generator merges signal provided by vibration analysis experts with domain-specific parameter identification and fault diagnosis question-answer pairs to build signal-question-answer triplets.
The fine-tuned model is assessed through the combined efforts of large language model and expert rules to evaluate answer accuracy and relevance.
arXiv Detail & Related papers (2024-09-03T06:21:26Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input.
We first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise.
We propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models.
arXiv Detail & Related papers (2023-06-01T19:04:17Z) - Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid
CNN-RNN [0.0]
In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering.
Footstep-induced vibrations are useful for analyzing the movement of biological systems such as the human body and animals.
In this paper, we propose a novel ensemble model that leverages both the ensemble of multiple signals and of recurrent and convolutional neural network predictions.
arXiv Detail & Related papers (2023-03-11T00:49:45Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems.
Traditional Fault Detection and Diagnosis (FDD) frameworks get poor performances when dealing with real-world circumstances.
This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system.
arXiv Detail & Related papers (2022-02-09T01:09:59Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.