FD-LLM: Large Language Model for Fault Diagnosis of Machines
- URL: http://arxiv.org/abs/2412.01218v1
- Date: Mon, 02 Dec 2024 07:36:35 GMT
- Title: FD-LLM: Large Language Model for Fault Diagnosis of Machines
- Authors: Hamzah A. A. M. Qaid, Bo Zhang, Dan Li, See-Kiong Ng, Wei Li,
- Abstract summary: This study introduces a novel IFD approach by effectively adapting large language models to numerical data inputs for identifying faults from time-series sensor data.
We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem.
We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions.
- Score: 20.679299204776527
- License:
- Abstract: Large language models (LLMs) are effective at capturing complex, valuable conceptual representations from textual data for a wide range of real-world applications. However, in fields like Intelligent Fault Diagnosis (IFD), incorporating additional sensor data-such as vibration signals, temperature readings, and operational metrics-is essential but it is challenging to capture such sensor data information within traditional text corpora. This study introduces a novel IFD approach by effectively adapting LLMs to numerical data inputs for identifying various machine faults from time-series sensor data. We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem. We explore two methods for encoding vibration signals: the first method uses a string-based tokenization technique to encode vibration signals into text representations, while the second extracts statistical features from both the time and frequency domains as statistical summaries of each signal. We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions and machine components, namely for traditional fault diagnosis, cross-operational conditions, and cross-machine component settings. Our results show that LLMs such as Llama3 and Llama3-instruct demonstrate strong fault detection capabilities and significant adaptability across different operational conditions, outperforming state-of-the-art deep learning (DL) approaches in many cases.
Related papers
- A Multimodal Lightweight Approach to Fault Diagnosis of Induction Motors in High-Dimensional Dataset [1.148237645450678]
An accurate AI-based diagnostic system for induction motors (IMs) holds the potential to enhance proactive maintenance, mitigating unplanned downtime and curbing overall maintenance costs within an industrial environment.
Researchers have proposed various fault diagnosis approaches using signal processing (SP), machine learning (ML), deep learning (DL) and hybrid architectures for BRB faults.
This paper implements large-scale data of BRB faults by using a transfer-learning-based lightweight DL model named ShuffleNetV2 for diagnosing one, two, three, and four BRB faults using current and vibration signal data.
arXiv Detail & Related papers (2025-01-07T12:40:11Z) - FaultExplainer: Leveraging Large Language Models for Interpretable Fault Detection and Diagnosis [7.161558367924948]
This paper presents FaultExplainer, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP)
FaultExplainer integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs)
We evaluate the LLMs' reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults.
arXiv Detail & Related papers (2024-12-19T03:35:06Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Smart filter aided domain adversarial neural network for fault diagnosis
in noisy industrial scenarios [11.094903196524404]
We propose an unsupervised domain adaptation (UDA) method called Smart Filter-Aided Domain Adversarial Neural Network (SFDANN) for fault diagnosis in noisy industrial scenarios.
The proposed methodology comprises two steps. In the first step, we develop a smart filter that dynamically enforces similarity between the source and target domain data in the time-frequency domain.
In the second step, we input the data reconstructed by the smart filter into a domain adversarial neural network (DANN)
arXiv Detail & Related papers (2023-07-04T01:47:00Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Deep Scattering Spectrum germaneness to Fault Detection and Diagnosis
for Component-level Prognostics and Health Management (PHM) [0.0]
This work focuses on the study of the Deep Scattering Spectrum (DSS)'s relevance to fault detection and daignosis for mechanical components of industrail robots.
We used multiple industrial robots and distinct mechanical faults to build an approach for classifying the faults.
The presented approach was implemented on the practical test benches and demonstrated satisfactory performance in fault detection and diagnosis.
arXiv Detail & Related papers (2022-10-18T13:25:02Z) - Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid
Framework for Rotating Machinery [2.580765958706854]
Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems.
Traditional Fault Detection and Diagnosis (FDD) frameworks get poor performances when dealing with real-world circumstances.
This paper proposes a hybrid framework which uses the three aforementioned components to achieve an effective signal-based FDD system.
arXiv Detail & Related papers (2022-02-09T01:09:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.