Offline Policy Learning via Skill-step Abstraction for Long-horizon Goal-Conditioned Tasks
- URL: http://arxiv.org/abs/2408.11300v1
- Date: Wed, 21 Aug 2024 03:05:06 GMT
- Title: Offline Policy Learning via Skill-step Abstraction for Long-horizon Goal-Conditioned Tasks
- Authors: Donghoon Kim, Minjong Yoo, Honguk Woo,
- Abstract summary: We present an offline GC policy learning' framework tailored for tackling long-horizon GC tasks.
In the framework, a GC policy is progressively learned offline in conjunction with the incremental modeling of skill-step abstractions on the data.
We demonstrate the superiority and efficiency of our GLvSA framework in adapting GC policies to a wide range of long-horizon goals.
- Score: 7.122367852177223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Goal-conditioned (GC) policy learning often faces a challenge arising from the sparsity of rewards, when confronting long-horizon goals. To address the challenge, we explore skill-based GC policy learning in offline settings, where skills are acquired from existing data and long-horizon goals are decomposed into sequences of near-term goals that align with these skills. Specifically, we present an `offline GC policy learning via skill-step abstraction' framework (GLvSA) tailored for tackling long-horizon GC tasks affected by goal distribution shifts. In the framework, a GC policy is progressively learned offline in conjunction with the incremental modeling of skill-step abstractions on the data. We also devise a GC policy hierarchy that not only accelerates GC policy learning within the framework but also allows for parameter-efficient fine-tuning of the policy. Through experiments with the maze and Franka kitchen environments, we demonstrate the superiority and efficiency of our GLvSA framework in adapting GC policies to a wide range of long-horizon goals. The framework achieves competitive zero-shot and few-shot adaptation performance, outperforming existing GC policy learning and skill-based methods.
Related papers
- Offline Hierarchical Reinforcement Learning via Inverse Optimization [23.664330010602708]
OHIO is a framework for offline reinforcement learning of hierarchical policies.
We show it substantially outperforms end-to-end RL methods and improves robustness.
arXiv Detail & Related papers (2024-10-10T14:00:21Z) - Imitating Graph-Based Planning with Goal-Conditioned Policies [72.61631088613048]
We present a self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy.
We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods.
arXiv Detail & Related papers (2023-03-20T14:51:10Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
We present Efficient Learning of High-Level Plans from Play (ELF-P), a framework for robotic learning that bridges motion planning and deep RL.
We demonstrate that ELF-P has significantly better sample efficiency than relevant baselines over multiple realistic manipulation tasks.
arXiv Detail & Related papers (2023-03-16T20:09:47Z) - Goal Exploration Augmentation via Pre-trained Skills for Sparse-Reward
Long-Horizon Goal-Conditioned Reinforcement Learning [6.540225358657128]
Reinforcement learning (RL) often struggles to accomplish a sparse-reward long-horizon task in a complex environment.
Goal-conditioned reinforcement learning (GCRL) has been employed to tackle this difficult problem via a curriculum of easy-to-reach sub-goals.
In GCRL, exploring novel sub-goals is essential for the agent to ultimately find the pathway to the desired goal.
arXiv Detail & Related papers (2022-10-28T11:11:04Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Successor Feature Landmarks for Long-Horizon Goal-Conditioned
Reinforcement Learning [54.378444600773875]
We introduce Successor Feature Landmarks (SFL), a framework for exploring large, high-dimensional environments.
SFL drives exploration by estimating state-novelty and enables high-level planning by abstracting the state-space as a non-parametric landmark-based graph.
We show in our experiments on MiniGrid and ViZDoom that SFL enables efficient exploration of large, high-dimensional state spaces.
arXiv Detail & Related papers (2021-11-18T18:36:05Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Goal-Conditioned Reinforcement Learning with Imagined Subgoals [89.67840168694259]
We propose to incorporate imagined subgoals into policy learning to facilitate learning of complex tasks.
Imagined subgoals are predicted by a separate high-level policy, which is trained simultaneously with the policy and its critic.
We evaluate our approach on complex robotic navigation and manipulation tasks and show that it outperforms existing methods by a large margin.
arXiv Detail & Related papers (2021-07-01T15:30:59Z) - Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep
Reinforcement Learning [9.014110264448371]
We propose a novel unsupervised learning approach named goal-conditioned policy with intrinsic motivation (GPIM)
GPIM jointly learns both an abstract-level policy and a goal-conditioned policy.
Experiments on various robotic tasks demonstrate the effectiveness and efficiency of our proposed GPIM method.
arXiv Detail & Related papers (2021-04-11T16:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.