論文の概要: Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking Across Diverse Vocabularies
- arxiv url: http://arxiv.org/abs/2408.11327v1
- Date: Wed, 21 Aug 2024 04:20:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:28:56.240453
- Title: Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking Across Diverse Vocabularies
- Title(参考訳): Plug, Play, and Fuse: 単語レベルの再分類によるゼロショットジョイントデコーディング
- Authors: Sai Koneru, Matthias Huck, Miriam Exel, Jan Niehues,
- Abstract要約: マルチモーダル翻訳は、翻訳と画像処理の両方を扱うなど、これらの長所の組み合わせを必要とすることが多い。
本稿では,デコードフェーズにおいて,異なるモデルの統合を可能にする新しいゼロショットアンサンブル戦略を提案する。
提案手法では,単語レベルでのスコアを組み合わせ,単語がいつ完了するかをマルチモーダルで予測することで,復号中にビームを再ランクする。
- 参考スコア(独自算出の注目度): 12.843274390224853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in NLP have resulted in models with specialized strengths, such as processing multimodal inputs or excelling in specific domains. However, real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing. While individual translation and vision models are powerful, they typically lack the ability to perform both tasks in a single system. Combining these models poses challenges, particularly due to differences in their vocabularies, which limit the effectiveness of traditional ensemble methods to post-generation techniques like N-best list re-ranking. In this work, we propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training. Our approach re-ranks beams during decoding by combining scores at the word level, using heuristics to predict when a word is completed. We demonstrate the effectiveness of this method in machine translation scenarios, showing that it enables the generation of translations that are both speech- and image-aware while also improving overall translation quality\footnote{We will release the code upon paper acceptance.}.
- Abstract(参考訳): NLPの最近の進歩は、マルチモーダル入力の処理や特定の領域での優れた処理など、特別な強みを持つモデルを生み出している。
しかし、マルチモーダル翻訳のような現実世界のタスクは、翻訳と画像処理の両方を扱うなど、これらの強みの組み合わせを必要とすることが多い。
個々の翻訳モデルとビジョンモデルは強力だが、通常は単一のシステムで両方のタスクを実行する能力が欠けている。
これらのモデルを組み合わせることは、特に語彙の違いにより、従来のアンサンブル手法の有効性をN-bestリストの再ランク付けのようなポストジェネレーション技術に制限する問題を引き起こす。
そこで本研究では,デコードフェーズにおいて,追加のトレーニングを必要とせずに,異なるモデルの統合を可能にする,新たなゼロショットアンサンブル戦略を提案する。
提案手法は,単語レベルでのスコアを組み合わせて,単語がいつ完了したかを予測するヒューリスティックスを用いて,復号中にビームを再ランクする。
機械翻訳シナリオにおいて,本手法の有効性を実証し,音声と画像の両方を意識した翻訳生成を可能にするとともに,全体の翻訳品質を向上することを示す。
と。
関連論文リスト
- Contextual Code Switching for Machine Translation using Language Models [1.4866655830571935]
大規模言語モデル(LLM)は近年,多種多様な言語関連タスクに多大な影響を与えている。
本稿では,複数のLLMを比較した機械翻訳タスクに特化して,コード切替タスクについて広範な研究を行う。
以上の結果から,LLMは特定のタスクに有望な結果をもたらすにもかかわらず,機械翻訳タスクにおける多言語大言語モデルよりも比較的少ない複雑性を持つモデルの方が優れていることが示唆された。
論文 参考訳(メタデータ) (2023-12-20T16:40:33Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPERは言語のみのゼロショットモデルを拡張して、画像や音声のキャプションといったマルチモーダルタスクを未確認にする。
我々の重要な新規性は、強化学習を使用することで、直接監督することなく、多モーダル入力を言語モデル世代に整列させることである。
実験の結果、ESPERはベースラインと様々なゼロショットタスクの事前作業より優れていることが示された。
論文 参考訳(メタデータ) (2022-05-25T10:12:17Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
様々なモデルの恩恵を受けながらテキストを生成するシンプルで一般的な推論アルゴリズムであるTwist decodingを導入する。
我々の方法は、語彙、トークン化、あるいは生成順序が共有されていると仮定しない。
論文 参考訳(メタデータ) (2022-05-19T01:27:53Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - Sequence-to-Sequence Lexical Normalization with Multilingual
Transformers [3.3302293148249125]
現在の自然言語処理のベンチマークタスクには、非公式な日々のデジタルコミュニケーションで使用されるテキストと質的に異なるテキストが含まれている。
この不一致は、実世界のデータに基づいて微調整された場合、最先端のNLPモデルの大幅な性能劣化を引き起こした。
機械翻訳問題として,mBARTに基づく文レベルのシーケンス・ツー・シーケンスモデルを提案する。
論文 参考訳(メタデータ) (2021-10-06T15:53:20Z) - Fusion Models for Improved Visual Captioning [18.016295296424413]
本稿では,キャプション生成と修正のための汎用マルチモーダルモデル融合フレームワークを提案する。
我々は、事前訓練されたマスケッド言語モデル(MLM)と視覚的キャプションモデル、Viz. Show、Attend、Tellを統合するために、同じ融合戦略を採用している。
Flickr8k, Flickr30k, MSCOCOの3つのベンチマーク画像キャプションデータセットに対するキャプション評価実験では, ベースラインよりも改善が見られた。
論文 参考訳(メタデータ) (2020-10-28T21:55:25Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Multiple Word Embeddings for Increased Diversity of Representation [15.279850826041066]
本稿では,実行時間の増加を無視できるような,強いベースライン上での性能を実質的に一貫的に向上させる手法を示す。
我々は、事前学習した埋め込み類似性と語彙被覆の側面を分析し、表現多様性がなぜこの技術が機能するかの原動力であることを見出した。
論文 参考訳(メタデータ) (2020-09-30T02:33:09Z) - Non-Autoregressive Image Captioning with Counterfactuals-Critical
Multi-Agent Learning [46.060954649681385]
新たな訓練パラダイムを持つ非自己回帰的画像キャプションモデル: 対実的クリティカルなマルチエージェント学習(CMAL)を提案する。
我々のNAICモデルは、最先端の自己回帰モデルに匹敵する性能を達成し、13.9倍のデコードスピードアップを実現している。
論文 参考訳(メタデータ) (2020-05-10T15:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。