論文の概要: Multiple Word Embeddings for Increased Diversity of Representation
- arxiv url: http://arxiv.org/abs/2009.14394v2
- Date: Fri, 9 Oct 2020 04:40:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 23:27:05.032195
- Title: Multiple Word Embeddings for Increased Diversity of Representation
- Title(参考訳): 表現の多様性を高めるための複数単語埋め込み
- Authors: Brian Lester, Daniel Pressel, Amy Hemmeter, Sagnik Ray Choudhury and
Srinivas Bangalore
- Abstract要約: 本稿では,実行時間の増加を無視できるような,強いベースライン上での性能を実質的に一貫的に向上させる手法を示す。
我々は、事前学習した埋め込み類似性と語彙被覆の側面を分析し、表現多様性がなぜこの技術が機能するかの原動力であることを見出した。
- 参考スコア(独自算出の注目度): 15.279850826041066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most state-of-the-art models in natural language processing (NLP) are neural
models built on top of large, pre-trained, contextual language models that
generate representations of words in context and are fine-tuned for the task at
hand. The improvements afforded by these "contextual embeddings" come with a
high computational cost. In this work, we explore a simple technique that
substantially and consistently improves performance over a strong baseline with
negligible increase in run time. We concatenate multiple pre-trained embeddings
to strengthen our representation of words. We show that this concatenation
technique works across many tasks, datasets, and model types. We analyze
aspects of pre-trained embedding similarity and vocabulary coverage and find
that the representational diversity between different pre-trained embeddings is
the driving force of why this technique works. We provide open source
implementations of our models in both TensorFlow and PyTorch.
- Abstract(参考訳): 自然言語処理(nlp)の最先端モデルの多くは、コンテキスト内の単語の表現を生成し、手元のタスク用に微調整された、大規模で事前学習されたコンテキスト言語モデル上に構築されたニューラルモデルである。
これらの「コンテキスト埋め込み」によって得られる改善は計算コストが高い。
本研究では,実行時間の増加を無視して,強力なベースライン上での性能を実質的にかつ一貫して向上させる,シンプルな手法について検討する。
単語の表現を強化するために、複数の事前学習された埋め込みを結合する。
この結合技術は多くのタスク、データセット、モデルタイプにわたって機能することを示す。
我々は,事前学習された組込みの類似性と語彙のカバレッジの側面を分析し,異なる訓練済み組込み間の表現的多様性が,この手法が機能する理由の原動力であることを見出した。
TensorFlowとPyTorchの両方で、私たちのモデルのオープンソース実装を提供しています。
関連論文リスト
- Large Concept Models: Language Modeling in a Sentence Representation Space [62.73366944266477]
本稿では,概念を命名した明示的な高レベルな意味表現に基づくアーキテクチャの試みを行う。
概念は言語とモダリティに依存しないものであり、フローにおけるより高いレベルの考えや行動を表している。
本モデルでは,多くの言語に対して,ゼロショットの一般化性能が顕著であることを示す。
論文 参考訳(メタデータ) (2024-12-11T23:36:20Z) - Manual Verbalizer Enrichment for Few-Shot Text Classification [1.860409237919611]
acrshortmaveは、クラスラベルの豊か化による動詞化のためのアプローチである。
本モデルでは, 資源を著しく減らしながら, 最先端の成果が得られている。
論文 参考訳(メタデータ) (2024-10-08T16:16:47Z) - Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking Across Diverse Vocabularies [12.843274390224853]
マルチモーダル翻訳のような現実世界のタスクは、翻訳と画像処理の両方を扱うなど、これらの強みの組み合わせを必要とすることが多い。
新たなゼロショットアンサンブル戦略を提案し,デコードフェーズにおいて,追加のトレーニングを必要とせずに,異なるモデルの統合を可能にする。
提案手法では,単語レベルでのスコアを組み合わせ,単語がいつ完了するかをマルチモーダルで予測することで,復号中にビームを再ランクする。
論文 参考訳(メタデータ) (2024-08-21T04:20:55Z) - Towards General Text Embeddings with Multi-stage Contrastive Learning [20.803769345818456]
GTEは多段階のコントラスト学習で訓練された汎用テキスト埋め込みモデルである。
複数の情報源からの多様なデータセットに対してコントラスト学習を用いることで、統一的なテキスト埋め込みモデルを訓練する。
論文 参考訳(メタデータ) (2023-08-07T03:52:59Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models
Robust with Little Cost [5.672132510411465]
最先端のNLPシステムは、単語埋め込みを伴う入力を表すが、外語彙の単語に直面すると、これらは不安定である。
我々は,単語の表面形のみを用いて事前学習した埋め込みの挙動を学習することにより,未知語に対するベクトルを生成するための模倣様モデルの原理に従う。
本稿では,既存の事前学習型言語モデル(BERTなど)の単語表現を拡張したシンプルなコントラスト学習フレームワークLOVEを提案する。
論文 参考訳(メタデータ) (2022-03-15T13:11:07Z) - OCHADAI-KYODAI at SemEval-2021 Task 1: Enhancing Model Generalization
and Robustness for Lexical Complexity Prediction [8.066349353140819]
単語とマルチワード表現の語彙的複雑性を予測するアンサンブルモデルを提案する。
モデルは、目的語またはMWEandの文を入力として受信し、その複雑性スコアを出力する。
本モデルは,両サブタスクの上位10システムにランクインした。
論文 参考訳(メタデータ) (2021-05-12T09:27:46Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Syntax-Enhanced Pre-trained Model [49.1659635460369]
BERTやRoBERTaなどの学習済みモデルを強化するために、テキストの構文構造を活用するという問題を研究する。
既存の手法では、事前学習段階または微調整段階のいずれかでテキストの構文を利用しており、両者の区別に苦しむ。
事前学習と微調整の両方の段階でテキストのシンタックスを利用するモデルを提示する。
論文 参考訳(メタデータ) (2020-12-28T06:48:04Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。