Vision HgNN: An Electron-Micrograph is Worth Hypergraph of Hypernodes
- URL: http://arxiv.org/abs/2408.11351v1
- Date: Wed, 21 Aug 2024 05:36:53 GMT
- Title: Vision HgNN: An Electron-Micrograph is Worth Hypergraph of Hypernodes
- Authors: Sakhinana Sagar Srinivas, Rajat Kumar Sarkar, Sreeja Gangasani, Venkataramana Runkana,
- Abstract summary: We propose a hypergraph neural network backbone architecture to better model the complex relationships in electron micrographs.
By utilizing cost-effective GPU hardware, our proposed framework outperforms popular baselines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Material characterization using electron micrographs is a crucial but challenging task with applications in various fields, such as semiconductors, quantum materials, batteries, etc. The challenges in categorizing electron micrographs include but are not limited to the complexity of patterns, high level of detail, and imbalanced data distribution(long-tail distribution). Existing methods have difficulty in modeling the complex relational structure in electron micrographs, hindering their ability to effectively capture the complex relationships between different spatial regions of micrographs. We propose a hypergraph neural network(HgNN) backbone architecture, a conceptually alternative approach, to better model the complex relationships in electron micrographs and improve material characterization accuracy. By utilizing cost-effective GPU hardware, our proposed framework outperforms popular baselines. The results of the ablation studies demonstrate that the proposed framework is effective in achieving state-of-the-art performance on benchmark datasets and efficient in terms of computational and memory requirements for handling large-scale electron micrograph-based datasets.
Related papers
- Exploring structure diversity in atomic resolution microscopy with graph neural networks [18.903519247639355]
Deep learning is a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.
This work provides a powerful tool to explore structure diversity in a fast, accurate, and intelligent manner.
arXiv Detail & Related papers (2024-10-23T07:48:35Z) - Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models [0.0]
We propose an innovative backbone architecture for analyzing electron micrographs.
We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs.
Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts.
arXiv Detail & Related papers (2024-08-24T19:24:44Z) - Foundational Model for Electron Micrograph Analysis: Instruction-Tuning Small-Scale Language-and-Vision Assistant for Enterprise Adoption [0.0]
We introduce a small-scale framework for analyzing semiconductor electron microscopy images (MAEMI)
We generate a customized instruction-following dataset using large multimodal models on microscopic image analysis.
We perform knowledge transfer from larger to smaller models through knowledge distillation, resulting in improved accuracy of smaller models on visual question answering tasks.
arXiv Detail & Related papers (2024-08-23T17:42:11Z) - EMCNet : Graph-Nets for Electron Micrographs Classification [0.0]
We propose an effective end-to-end electron micrograph representation learning-based framework for nanomaterial identification.
We demonstrate that our framework outperforms the popular baselines on the open-source datasets in nanomaterials-based identification tasks.
arXiv Detail & Related papers (2024-08-21T02:15:26Z) - Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
We introduce WarpSci, a framework designed to overcome crucial system bottlenecks in the application of reinforcement learning.
We eliminate the need for data transfer between the CPU and GPU, enabling the concurrent execution of thousands of simulations.
arXiv Detail & Related papers (2024-08-01T21:38:09Z) - Automated Grain Boundary (GB) Segmentation and Microstructural Analysis
in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy [2.0445155106382797]
Austenitic 347H stainless steel offers superior mechanical properties and corrosion resistance required for extreme operating conditions.
CNN based deep-learning models is a powerful technique to detect features from material micrographs in an automated manner.
We combine scanning electron microscopy (SEM) images of 347H stainless steel as training data and electron backscatter diffraction (EBSD) micrographs as pixel-wise labels for grain boundary detection.
arXiv Detail & Related papers (2023-05-12T22:49:36Z) - Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.