Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models
- URL: http://arxiv.org/abs/2408.13661v1
- Date: Sat, 24 Aug 2024 19:24:44 GMT
- Title: Hierarchical Network Fusion for Multi-Modal Electron Micrograph Representation Learning with Foundational Large Language Models
- Authors: Sakhinana Sagar Srinivas, Geethan Sannidhi, Venkataramana Runkana,
- Abstract summary: We propose an innovative backbone architecture for analyzing electron micrographs.
We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs.
Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterizing materials with electron micrographs is a crucial task in fields such as semiconductors and quantum materials. The complex hierarchical structure of micrographs often poses challenges for traditional classification methods. In this study, we propose an innovative backbone architecture for analyzing electron micrographs. We create multi-modal representations of the micrographs by tokenizing them into patch sequences and, additionally, representing them as vision graphs, commonly referred to as patch attributed graphs. We introduce the Hierarchical Network Fusion (HNF), a multi-layered network structure architecture that facilitates information exchange between the multi-modal representations and knowledge integration across different patch resolutions. Furthermore, we leverage large language models (LLMs) to generate detailed technical descriptions of nanomaterials as auxiliary information to assist in the downstream task. We utilize a cross-modal attention mechanism for knowledge fusion across cross-domain representations(both image-based and linguistic insights) to predict the nanomaterial category. This multi-faceted approach promises a more comprehensive and accurate representation and classification of micrographs for nanomaterial identification. Our framework outperforms traditional methods, overcoming challenges posed by distributional shifts, and facilitating high-throughput screening.
Related papers
- Preliminary Investigations of a Multi-Faceted Robust and Synergistic Approach in Semiconductor Electron Micrograph Analysis: Integrating Vision Transformers with Large Language and Multimodal Models [0.0]
This study introduces an innovative architecture that leverages the generative capabilities of zero-shot prompting.
It fuses knowledge across image based and linguistic insights for accurate nanomaterial category prediction.
arXiv Detail & Related papers (2024-08-24T16:28:00Z) - EMCNet : Graph-Nets for Electron Micrographs Classification [0.0]
We propose an effective end-to-end electron micrograph representation learning-based framework for nanomaterial identification.
We demonstrate that our framework outperforms the popular baselines on the open-source datasets in nanomaterials-based identification tasks.
arXiv Detail & Related papers (2024-08-21T02:15:26Z) - Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks [0.10995326465245926]
Graph convolutional networks (GCNs) have emerged as a powerful alternative to multiple instance learning with convolutional neural networks in digital pathology.
Our proposed multi-scale GCN (MS-GCN) tackles this issue by leveraging information across multiple magnification levels in whole slide images.
MS-GCN demonstrates superior performance over existing single-magnification GCN methods.
arXiv Detail & Related papers (2024-03-22T09:48:50Z) - MeLM, a generative pretrained language modeling framework that solves
forward and inverse mechanics problems [0.0]
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems.
The framework is applied to various examples including bio-inspired hierarchical honeycomb design and carbon nanotube mechanics.
arXiv Detail & Related papers (2023-06-30T10:28:20Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - Molecular Joint Representation Learning via Multi-modal Information [11.493011069441188]
We propose a novel framework of molecular joint representation learning via Multi-Modal information of SMILES and molecular Graphs, called MMSG.
We improve the self-attention mechanism by introducing bond level graph representation as attention bias in Transformer.
We further propose a Bidirectional Message Communication Graph Neural Network (BMC GNN) to strengthen the information flow aggregated from graphs for further combination.
arXiv Detail & Related papers (2022-11-25T11:53:23Z) - Convolutional Learning on Multigraphs [153.20329791008095]
We develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs)
To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model.
We develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity.
The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
arXiv Detail & Related papers (2022-09-23T00:33:04Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
multimodal image synthesis and editing has become a hot research topic in recent years.
We comprehensively contextualize the advance of the recent multimodal image synthesis and editing.
We describe benchmark datasets and evaluation metrics as well as corresponding experimental results.
arXiv Detail & Related papers (2021-12-27T10:00:16Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
We propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network.
A co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features.
The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-05-05T02:27:25Z) - Cross-Media Keyphrase Prediction: A Unified Framework with
Multi-Modality Multi-Head Attention and Image Wordings [63.79979145520512]
We explore the joint effects of texts and images in predicting the keyphrases for a multimedia post.
We propose a novel Multi-Modality Multi-Head Attention (M3H-Att) to capture the intricate cross-media interactions.
Our model significantly outperforms the previous state of the art based on traditional attention networks.
arXiv Detail & Related papers (2020-11-03T08:44:18Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
We propose a novel graph-based multi-modal fusion encoder for NMT.
We first represent the input sentence and image using a unified multi-modal graph.
We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations.
arXiv Detail & Related papers (2020-07-17T04:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.