Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization
- URL: http://arxiv.org/abs/2408.11359v1
- Date: Wed, 21 Aug 2024 06:04:02 GMT
- Title: Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization
- Authors: Sakhinana Sagar Srinivas, Rajat Kumar Sarkar, Venkataramana Runkana,
- Abstract summary: We present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors.
The framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts.
It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection is fundamental yet, challenging problem with practical applications in industry. The current approaches neglect the higher-order dependencies within the networks of interconnected sensors in the high-dimensional time series(multisensor data) for anomaly detection. To this end, we present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors using the hierarchical encoder-decoder architecture to overcome the challenges. The hypergraph representation learning-based framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts through the self-supervised autoregressive task and predicts the anomalies based on the forecast error. Furthermore, our framework incentivizes learning the anomaly-diagnosis ontology through a differentiable approach. It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy to remedy an anomaly. We conduct extensive experiments to evaluate the proposed method on the benchmark datasets for fair and rigorous comparison with the popular baselines. The proposed method outperforms the baseline models and achieves SOTA performance. We report the ablation studies to support the efficacy of the framework.
Related papers
- Robust Anomaly Detection via Tensor Chidori Pseudoskeleton Decomposition [0.0]
Anomaly detection plays a critical role in modern data-driven applications.
Traditional approaches, such as distance, density, or cluster-based methods, face challenges when applied to high dimensional tensor data.
This paper leverages Chidori pseudoskeleton decomposition to extract low Tucker rank structure while isolating sparse anomalies.
arXiv Detail & Related papers (2025-02-14T05:34:57Z) - Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
Graph out-of-distribution (GOOD) detection focuses on identifying graph data that deviates from the distribution seen during training.
We categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches.
We discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data.
arXiv Detail & Related papers (2025-02-12T04:07:12Z) - Hyperbolic Self-supervised Contrastive Learning Based Network Anomaly
Detection [0.0]
Anomaly detection on the attributed network has recently received increasing attention in many research fields.
We propose an efficient anomaly detection framework using hyperbolic self-supervised contrastive learning.
arXiv Detail & Related papers (2022-09-12T07:08:34Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Leveraging Evidential Deep Learning Uncertainties with Graph-based
Clustering to Detect Anomalies [1.525943491541265]
We propose a graph-based traffic representation scheme to cluster trajectories of vessels using automatic identification system (AIS) data.
This paper proposes the usage of a deep learning (DL)-based uncertainty estimation in detecting maritime anomalies.
arXiv Detail & Related papers (2021-07-04T06:31:59Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
We develop a new way to detect anomalies in high-dimensional time series data.
Our approach combines a structure learning approach with graph neural networks.
We show that our method detects anomalies more accurately than baseline approaches.
arXiv Detail & Related papers (2021-06-13T09:07:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.