論文の概要: Graph Classification via Reference Distribution Learning: Theory and Practice
- arxiv url: http://arxiv.org/abs/2408.11370v1
- Date: Wed, 21 Aug 2024 06:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:09:27.542490
- Title: Graph Classification via Reference Distribution Learning: Theory and Practice
- Title(参考訳): 参照分布学習によるグラフ分類:理論と実践
- Authors: Zixiao Wang, Jicong Fan,
- Abstract要約: グラフ参照分布学習(GRDL, Graph Reference Distribution Learning)は, グラフの効率的な分類法である。
GRDLはGNN層によって与えられるグラフの潜在ノード埋め込みを離散分布として扱い、グローバルプールなしで直接分類できる。
中規模および大規模グラフデータセットの実験は、GRDLが最先端よりも優れていることを示している。
- 参考スコア(独自算出の注目度): 24.74871206083017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph classification is a challenging problem owing to the difficulty in quantifying the similarity between graphs or representing graphs as vectors, though there have been a few methods using graph kernels or graph neural networks (GNNs). Graph kernels often suffer from computational costs and manual feature engineering, while GNNs commonly utilize global pooling operations, risking the loss of structural or semantic information. This work introduces Graph Reference Distribution Learning (GRDL), an efficient and accurate graph classification method. GRDL treats each graph's latent node embeddings given by GNN layers as a discrete distribution, enabling direct classification without global pooling, based on maximum mean discrepancy to adaptively learned reference distributions. To fully understand this new model (the existing theories do not apply) and guide its configuration (e.g., network architecture, references' sizes, number, and regularization) for practical use, we derive generalization error bounds for GRDL and verify them numerically. More importantly, our theoretical and numerical results both show that GRDL has a stronger generalization ability than GNNs with global pooling operations. Experiments on moderate-scale and large-scale graph datasets show the superiority of GRDL over the state-of-the-art, emphasizing its remarkable efficiency, being at least 10 times faster than leading competitors in both training and inference stages.
- Abstract(参考訳): グラフ分類は、グラフ間の類似性を定量化することやグラフをベクトルとして表現することの難しさから難しい問題であるが、グラフカーネルやグラフニューラルネットワーク(GNN)を使った方法がいくつかある。
グラフカーネルは計算コストや手動機能エンジニアリングに悩まされることが多いが、GNNはグローバルプール操作を一般的に利用しており、構造情報やセマンティック情報の喪失を危惧している。
グラフ参照分布学習(GRDL, Graph Reference Distribution Learning)は, グラフの効率的な分類法である。
GRDLは、GNN層が与える各グラフの潜在ノード埋め込みを離散分布として扱い、適応的に学習された参照分布に対する最大平均差に基づいて、グローバルプールなしで直接分類できる。
この新しいモデル(既存の理論は適用できない)を十分に理解し、その構成(例えば、ネットワークアーキテクチャ、参照のサイズ、数、正規化)を実践するために導くため、GRDLの一般化誤差境界を導出し、数値的に検証する。
さらに,我々の理論的および数値的な結果は,GRDLがグローバルプール操作を持つGNNよりも強力な一般化能力を有することを示している。
中規模および大規模グラフデータセットの実験では、GRDLが最先端のグラフよりも優れていることが示され、その顕著な効率を強調し、トレーニングと推論の段階で上位の競合より少なくとも10倍高速である。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - A Class-Aware Representation Refinement Framework for Graph Classification [8.998543739618077]
グラフ分類作業のためのクラス認識表現rEfinement (CARE) フレームワークを提案する。
CAREは単純だが強力なクラス表現を計算し、グラフ表現の学習をより良いクラス分離性へと導くためにそれらを注入する。
9つのベンチマークデータセット上の11のよく知られたGNNバックボーンを用いた実験は、そのGNNよりもCAREの優位性と有効性を検証する。
論文 参考訳(メタデータ) (2022-09-02T10:18:33Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
我々は,不均衡なグラフ分類に多様な専門家の混在を利用したフレームワークであるGraphDIVEを提案する。
GraphDIVEは、分割と並列の原則により、不均衡なグラフデータセットを複数のサブセットに分割するゲーティングネットワークを採用しています。
実世界の不均衡グラフデータセットに関する実験は、GraphDIVEの有効性を示している。
論文 参考訳(メタデータ) (2021-03-29T14:03:03Z) - From Local Structures to Size Generalization in Graph Neural Networks [53.3202754533658]
グラフニューラルネットワーク(GNN)は、さまざまなサイズのグラフを処理することができる。
特に小さなグラフから大きなグラフまで、サイズをまたいで一般化する能力は、まだよく理解されていない。
論文 参考訳(メタデータ) (2020-10-17T19:36:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。