論文の概要: A Class-Aware Representation Refinement Framework for Graph Classification
- arxiv url: http://arxiv.org/abs/2209.00936v2
- Date: Thu, 6 Jun 2024 09:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 01:19:21.657210
- Title: A Class-Aware Representation Refinement Framework for Graph Classification
- Title(参考訳): グラフ分類のためのクラス認識表現リファインメントフレームワーク
- Authors: Jiaxing Xu, Jinjie Ni, Yiping Ke,
- Abstract要約: グラフ分類作業のためのクラス認識表現rEfinement (CARE) フレームワークを提案する。
CAREは単純だが強力なクラス表現を計算し、グラフ表現の学習をより良いクラス分離性へと導くためにそれらを注入する。
9つのベンチマークデータセット上の11のよく知られたGNNバックボーンを用いた実験は、そのGNNよりもCAREの優位性と有効性を検証する。
- 参考スコア(独自算出の注目度): 8.998543739618077
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) are widely used for graph representation learning. Despite its prevalence, GNN suffers from two drawbacks in the graph classification task, the neglect of graph-level relationships, and the generalization issue. Each graph is treated separately in GNN message passing/graph pooling, and existing methods to address overfitting operate on each individual graph. This makes the graph representations learnt less effective in the downstream classification. In this paper, we propose a Class-Aware Representation rEfinement (CARE) framework for the task of graph classification. CARE computes simple yet powerful class representations and injects them to steer the learning of graph representations towards better class separability. CARE is a plug-and-play framework that is highly flexible and able to incorporate arbitrary GNN backbones without significantly increasing the computational cost. We also theoretically prove that CARE has a better generalization upper bound than its GNN backbone through Vapnik-Chervonenkis (VC) dimension analysis. Our extensive experiments with 11 well-known GNN backbones on 9 benchmark datasets validate the superiority and effectiveness of CARE over its GNN counterparts.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフ表現学習に広く用いられている。
その頻度にもかかわらず、GNNはグラフ分類タスクの2つの欠点、グラフレベルの関係の無視、一般化問題に悩まされている。
各グラフはGNNメッセージパッシング/グラフプーリングで別々に処理され、各グラフ上でオーバーフィッティングに対処する既存の方法が動作している。
これにより、下流の分類においてグラフ表現がより効果的に学習される。
本稿では,グラフ分類作業のためのクラス認識表現rEfinement(CARE)フレームワークを提案する。
CAREは単純だが強力なクラス表現を計算し、グラフ表現の学習をより良いクラス分離性へと導くためにそれらを注入する。
CAREは、非常に柔軟で、計算コストを大幅に増大させることなく任意のGNNバックボーンを組み込むことができるプラグイン・アンド・プレイのフレームワークである。
また,CAREはVapnik-Chervonenkis (VC)次元解析により,GNNバックボーンよりも上界の一般化が優れていることを理論的に証明する。
9つのベンチマークデータセット上の11の有名なGNNバックボーンによる広範な実験は、GNNのベンチマークよりもCAREの優位性と有効性を検証する。
関連論文リスト
- Graph Classification via Reference Distribution Learning: Theory and Practice [24.74871206083017]
グラフ参照分布学習(GRDL, Graph Reference Distribution Learning)は, グラフの効率的な分類法である。
GRDLはGNN層によって与えられるグラフの潜在ノード埋め込みを離散分布として扱い、グローバルプールなしで直接分類できる。
中規模および大規模グラフデータセットの実験は、GRDLが最先端よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-08-21T06:42:22Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
我々は,サブ構造欠落の現実的なノイズをシミュレートするtextbfGraphCrop (Subgraph Cropping) データ拡張法を開発した。
グラフ分類のための有効な構造コンテキストを保存することにより、GNNはグローバルな意味でグラフ構造の内容を理解することを奨励する。
論文 参考訳(メタデータ) (2020-09-22T14:05:41Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Few-Shot Learning on Graphs via Super-Classes based on Graph Spectral
Measures [14.932318540666545]
グラフニューラルネットワーク (GNN) におけるショットグラフ分類の問題について, 限定ラベル付きグラフの場合, 未確認のクラスを認識するために検討した。
グラフ正規化ラプラシアンのスペクトルに基づいて確率測度を各グラフに割り当てる手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T17:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。