論文の概要: RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2408.11381v2
- Date: Mon, 9 Sep 2024 11:18:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 01:05:18.064395
- Title: RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
- Title(参考訳): RAGLAB:Retrieval-Augmented Generationのためのモジュール型で研究指向の統一フレームワーク
- Authors: Xuanwang Zhang, Yunze Song, Yidong Wang, Shuyun Tang, Xinfeng Li, Zhengran Zeng, Zhen Wu, Wei Ye, Wenyuan Xu, Yue Zhang, Xinyu Dai, Shikun Zhang, Qingsong Wen,
- Abstract要約: 大きな言語モデル(LLM)は対話、推論、知識保持における人間レベルの能力を示す。
現在の研究は、LLMに外部知識を組み込むことによって、このボトルネックに対処している。
RAGLABはモジュール的で研究指向のオープンソースライブラリで、6つの既存のアルゴリズムを再現し、RAGアルゴリズムを調査するための包括的なエコシステムを提供する。
- 参考スコア(独自算出の注目度): 54.707460684650584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.
- Abstract(参考訳): 大きな言語モデル(LLM)は対話、推論、知識保持における人間レベルの能力を示す。
しかし、最も先進的なLLMでさえ、幻覚やその知識のリアルタイム更新といった課題に直面している。
現在の研究では、LLMに外部知識(Retrieval Augmented Generation (RAG)と呼ばれる技術)を組み込むことによって、このボトルネックに対処している。
しかし、2つの重要な問題がRAGの開発を制約した。
第一に、新しいRAGアルゴリズム間の包括的および公正な比較の欠如が増している。
第2に,LlamaIndexやLangChainといったオープンソースツールでは,高レベルの抽象化が採用されているため,透明性の欠如や,新たなアルゴリズムや評価指標の開発能力の制限が実現している。
このギャップを埋めるために、モジュール的で研究指向のオープンソースライブラリであるRAGLABを紹介します。
RAGLABは既存の6つのアルゴリズムを再現し、RAGアルゴリズムを調査するための包括的なエコシステムを提供する。
RAGLABを利用して、10ベンチマークで6つのRAGアルゴリズムを公正に比較する。
RAGLABでは、様々なアルゴリズムの性能を効率よく比較し、新しいアルゴリズムを開発することができる。
関連論文リスト
- Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) は,Large Language Models (LLMs) の実際の精度を高めることが示されている。
既存の手法は、抽出された証拠を効果的に活用する際の限定的な推論能力に悩まされることが多い。
我々は,オープンソースLLMを用いたRAGにおける推論能力の向上を目的とした,新しいフレームワークであるOpen-RAGを紹介する。
論文 参考訳(メタデータ) (2024-10-02T17:37:18Z) - BERGEN: A Benchmarking Library for Retrieval-Augmented Generation [26.158785168036662]
Retrieval-Augmented Generationは、外部知識による大規模言語モデルの拡張を可能にする。
一貫性のないベンチマークは、アプローチを比較し、パイプライン内の各コンポーネントの影響を理解する上で大きな課題となる。
本研究では,RAGを体系的に評価するための基礎となるベストプラクティスと,RAG実験を標準化した再現可能な研究用ライブラリであるBERGENについて検討する。
論文 参考訳(メタデータ) (2024-07-01T09:09:27Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [32.820100519805486]
FlashRAGは、研究者が既存のRAGメソッドを再現し、統一されたフレームワーク内で独自のRAGアルゴリズムを開発するのを支援するために設計された、効率的でモジュール化されたオープンソースツールキットである。
私たちのツールキットには、カスタマイズ可能なモジュラーフレームワーク、実装済みRAGワークの豊富なコレクション、包括的なデータセット、効率的な補助的な前処理スクリプト、広範囲で標準的な評価指標など、さまざまな機能があります。
論文 参考訳(メタデータ) (2024-05-22T12:12:40Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
学習検索(LSR)は、クエリとドキュメントを疎語彙ベクトルにエンコードするニューラルネットワークのファミリーである。
テキスト画像検索に焦点をあて,マルチモーダル領域へのLSRの適用について検討する。
LexLIPやSTAIRのような現在のアプローチでは、大規模なデータセットで複雑なマルチステップのトレーニングが必要です。
提案手法は, 密度ベクトルを凍結密度モデルからスパース語彙ベクトルへ効率的に変換する。
論文 参考訳(メタデータ) (2024-02-27T14:21:56Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
本稿では,アルゴリズム的推論経路を通じて大規模言語モデルを促進する新しい手法を提案する。
この結果から,LLMをアルゴリズムを用いて指導すると,アルゴリズム自体よりも性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-20T22:36:23Z) - Improving and Benchmarking Offline Reinforcement Learning Algorithms [87.67996706673674]
この作業は、低レベルの選択とデータセットによって引き起こされるギャップを埋めることを目的としている。
3つの代表アルゴリズムを用いて20の実装選択を実証的に検討する。
CRR+とCQL+の2つの変種がD4RL上で新たな最先端を実現している。
論文 参考訳(メタデータ) (2023-06-01T17:58:46Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
大きな言語モデル(LLM)は、機能記述からコードを実装するのに優れているが、アルゴリズムの問題に悩まされている。
我々は,アルゴリズムプログラムを LLM 生成 Oracle で合成するフレームワーク ALGO を提案し,その生成をガイドし,その正確性を検証する。
実験の結果,ALGOを装着すると,Codexモデルよりも8倍,CodeTよりも2.6倍の1サブミッションパス率が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-24T00:10:15Z) - A Pragmatic Look at Deep Imitation Learning [0.3626013617212666]
我々は6つの異なる対向的模倣学習アルゴリズムを再実装する。
広く使われている専門的軌跡データセットで評価する。
GAILは、様々なサンプルサイズにわたって、一貫してよく機能する。
論文 参考訳(メタデータ) (2021-08-04T06:33:10Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。