OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal
- URL: http://arxiv.org/abs/2408.11480v2
- Date: Wed, 25 Sep 2024 03:50:28 GMT
- Title: OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal
- Authors: Qiao Mo, Yukang Ding, Jinhua Hao, Qiang Zhu, Ming Sun, Chao Zhou, Feiyu Chen, Shuyuan Zhu,
- Abstract summary: We propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT.
We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block.
Our OAPT consists of two components: compression offset predictor and image reconstructor.
- Score: 11.880153842710776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based methods have shown remarkable performance in single JPEG artifacts removal task. However, existing methods tend to degrade on double JPEG images, which are prevalent in real-world scenarios. To address this issue, we propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT. We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block and design our model to cluster the similar patterns to remedy the difficulty of restoration. Our OAPT consists of two components: compression offset predictor and image reconstructor. Specifically, the predictor estimates pixel offsets between the first and second compression, which are then utilized to divide different patterns. The reconstructor is mainly based on several Hybrid Partition Attention Blocks (HPAB), combining vanilla window-based self-attention and sparse attention for clustered pattern features. Extensive experiments demonstrate that OAPT outperforms the state-of-the-art method by more than 0.16dB in double JPEG image restoration task. Moreover, without increasing any computation cost, the pattern clustering module in HPAB can serve as a plugin to enhance other transformer-based image restoration methods. The code will be available at https://github.com/QMoQ/OAPT.git .
Related papers
- Dual JPEG Compatibility: a Reliable and Explainable Tool for Image Forensics [13.859669037499769]
Given a JPEG pipeline (compression or decompression), this paper shows how to find the antecedent of a 8 x 8 block.
We show that inpainting, copy-move, or splicing applied after a JPEG compression can be turned into three different mismatch problems.
Our method can pinpoint forgeries down to the JPEG block with great detection power and without False Positive.
arXiv Detail & Related papers (2024-08-30T08:45:37Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Multi-Modality Deep Network for JPEG Artifacts Reduction [33.02405073842042]
We propose a multimodal fusion learning method for text-guided JPEG artifacts reduction.
Our method can obtain better deblocking results compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T11:54:02Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
We propose the Invertible Activation Transformation (IAT) module to tackle the issue of high-fidelity fine variable-rate image compression.
IAT and QLevel together give the image compression model the ability of fine variable-rate control while better maintaining the image fidelity.
Our method outperforms the state-of-the-art variable-rate image compression method by a large margin, especially after multiple re-encodings.
arXiv Detail & Related papers (2022-09-12T07:14:07Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
We propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration.
By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST) for HSI reconstruction.
arXiv Detail & Related papers (2022-05-20T11:37:44Z) - Practical Learned Lossless JPEG Recompression with Multi-Level
Cross-Channel Entropy Model in the DCT Domain [10.655855413391324]
We propose a deep learning based JPEG recompression method that operates on DCT domain.
Experiments show that our method achieves state-of-the-art performance compared with traditional JPEG recompression methods.
arXiv Detail & Related papers (2022-03-30T14:36:13Z) - Towards Flexible Blind JPEG Artifacts Removal [73.46374658847675]
We propose a flexible blind convolutional neural network, namely FBCNN, that can predict the adjustable quality factor to control the trade-off between artifacts removal and details preservation.
Our proposed FBCNN achieves favorable performance against state-of-the-art methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-09-29T17:12:10Z) - Image Splicing Detection, Localization and Attribution via JPEG Primary
Quantization Matrix Estimation and Clustering [49.75353434786065]
Detection of inconsistencies of double JPEG artefacts across different image regions is often used to detect local image manipulations.
We propose an end-to-end system that can also distinguish regions coming from different donor images.
arXiv Detail & Related papers (2021-02-02T11:21:49Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.