Dual JPEG Compatibility: a Reliable and Explainable Tool for Image Forensics
- URL: http://arxiv.org/abs/2408.17106v1
- Date: Fri, 30 Aug 2024 08:45:37 GMT
- Title: Dual JPEG Compatibility: a Reliable and Explainable Tool for Image Forensics
- Authors: Etienne Levecque, Jan Butora, Patrick Bas,
- Abstract summary: Given a JPEG pipeline (compression or decompression), this paper shows how to find the antecedent of a 8 x 8 block.
We show that inpainting, copy-move, or splicing applied after a JPEG compression can be turned into three different mismatch problems.
Our method can pinpoint forgeries down to the JPEG block with great detection power and without False Positive.
- Score: 13.859669037499769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a JPEG pipeline (compression or decompression), this paper shows how to find the antecedent of a 8 x 8 block. If it exists, the block is compatible with the pipeline. For unaltered images, all blocks are always compatible with the original pipeline; however, for manipulated images, this is not always the case. This article demonstrates the potential of compatibility concepts for JPEG image forensics. It presents a solution to the main challenge of finding a block antecedent in a high-dimensional space. This solution relies on a local search algorithm with restrictions on the search space. We show that inpainting, copy-move, or splicing applied after a JPEG compression can be turned into three different mismatch problems and be detected. In particular, when the image is re-compressed after the modification, we can detect the manipulation if the quality factor of the second compression is higher than the first one. Our method can pinpoint forgeries down to the JPEG block with great detection power and without False Positive. We compare our method with two state-of-the-art models on localizing inpainted forgeries after a simple or a double compression. We show that under our working assumptions, it outperforms those models for most experiments.
Related papers
- OAPT: Offset-Aware Partition Transformer for Double JPEG Artifacts Removal [11.880153842710776]
We propose Offset-Aware Partition Transformer for double JPEG artifacts removal, termed as OAPT.
We conduct an analysis of double JPEG compression that results in up to four patterns within each 8x8 block.
Our OAPT consists of two components: compression offset predictor and image reconstructor.
arXiv Detail & Related papers (2024-08-21T09:47:54Z) - Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency [2.8498944632323755]
We propose a Convolution Neural Network based deep learning architecture, which is capable of detecting the presence of re compression based forgery in JPEG images.
In this work, we also aim to localize the regions of image manipulation based on re compression features, using the trained neural network.
arXiv Detail & Related papers (2024-07-03T09:19:35Z) - Unified learning-based lossy and lossless JPEG recompression [15.922937139019547]
We propose a unified lossly and lossless JPEG recompression framework, which consists of learned quantization table and Markovian hierarchical variational autoencoders.
Experiments show that our method can achieve arbitrarily low distortion when the JPEG is close to the upper bound.
arXiv Detail & Related papers (2023-12-05T12:07:27Z) - Bitstream-Corrupted JPEG Images are Restorable: Two-stage Compensation
and Alignment Framework for Image Restoration [23.101965117344]
We study a real-world JPEG image restoration problem with bit errors on the encrypted bitstream.
We propose a robust JPEG decoder, followed by a two-stage compensation and alignment framework.
We conduct experiments on three benchmarks with varying degrees of bit error rates.
arXiv Detail & Related papers (2023-04-14T07:54:41Z) - Practical Learned Lossless JPEG Recompression with Multi-Level
Cross-Channel Entropy Model in the DCT Domain [10.655855413391324]
We propose a deep learning based JPEG recompression method that operates on DCT domain.
Experiments show that our method achieves state-of-the-art performance compared with traditional JPEG recompression methods.
arXiv Detail & Related papers (2022-03-30T14:36:13Z) - Image Splicing Detection, Localization and Attribution via JPEG Primary
Quantization Matrix Estimation and Clustering [49.75353434786065]
Detection of inconsistencies of double JPEG artefacts across different image regions is often used to detect local image manipulations.
We propose an end-to-end system that can also distinguish regions coming from different donor images.
arXiv Detail & Related papers (2021-02-02T11:21:49Z) - Towards Robust Data Hiding Against (JPEG) Compression: A
Pseudo-Differentiable Deep Learning Approach [78.05383266222285]
It is still an open challenge to achieve the goal of data hiding that can be against these compressions.
Deep learning has shown large success in data hiding, while non-differentiability of JPEG makes it challenging to train a deep pipeline for improving robustness against lossy compression.
In this work, we propose a simple yet effective approach to address all the above limitations at once.
arXiv Detail & Related papers (2020-12-30T12:30:09Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.