論文の概要: SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering
- arxiv url: http://arxiv.org/abs/2408.11491v2
- Date: Tue, 17 Dec 2024 13:32:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:55:18.666251
- Title: SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering
- Title(参考訳): SCANS: 安全に配慮したアクティベーションステアリングによるLCMの過大な安全性の軽減
- Authors: Zouying Cao, Yifei Yang, Hai Zhao,
- Abstract要約: 悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
近年の研究では、過大な安全性の問題により、安全性に配慮したLCMは、良質な問い合わせを拒否する傾向にあることが明らかになっている。
過大な安全性の懸念を和らげるために,SCANS法を提案する。
- 参考スコア(独自算出の注目度): 56.92068213969036
- License:
- Abstract: Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions. However, recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue, limiting their helpfulness. In this paper, we propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns in aligned LLMs. First, SCANS extracts the refusal steering vectors within the activation space and utilizes vocabulary projection to anchor some specific safety-critical layers which influence model refusal behavior. Second, by tracking the hidden state transition, SCANS identifies the steering direction and steers the model behavior accordingly, achieving a balance between exaggerated safety and adequate safety. Experiments show that SCANS achieves new state-of-the-art performance on XSTest and OKTest benchmarks, without impairing their defense capability against harmful queries and maintaining almost unchanged model capability.
- Abstract(参考訳): 悪意のある命令から脅威を守るために、LLM(Large Language Models)には安全アライメントが不可欠である。
しかし、近年の研究では、安全性の問題が誇張されているため、安全性に配慮したLCMでは、良質なクエリを拒否する傾向があり、その利便性が制限されていることが示されている。
本稿では,LCMにおける過大な安全性の懸念を軽減するために,SCANS(Safety-Conscious Activation Steering)手法を提案する。
まず、SCANSはアクティベーション空間内のリファレルステアリングベクターを抽出し、ボキャブラリプロジェクションを用いてモデル拒絶行動に影響を与える特定の安全クリティカルなレイヤをアンカーする。
第二に、隠れた状態遷移を追跡することによって、SCANSはステアリング方向を特定し、それに従ってモデル動作を操縦し、誇張された安全性と適切な安全性のバランスをとる。
実験によると、SCANSは有害なクエリに対する防御能力を損なうことなく、XSTestとOKTestベンチマークで新しい最先端のパフォーマンスを実現し、ほとんど変化のないモデル能力を維持する。
関連論文リスト
- STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
SafeTyアライメントとItrospective Reasoningを統合したフレームワークSTAIRを提案する。
その結果,STAIRは本能的アライメント戦略と比較して,有害なアウトプットを効果的に軽減し,有用性を保っていることがわかった。
テスト時のスケーリングでは、STAIRは一般的なジェイルブレイク攻撃に対して、Claude-3.5に匹敵する安全性能を達成する。
論文 参考訳(メタデータ) (2025-02-04T15:02:55Z) - Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
SafeSwitchは、モデルの内部状態を監視し、利用することによって、安全でない出力を動的に制御するフレームワークである。
実証実験の結果,SafeSwitchは安全性ベンチマークで80%以上の有害な出力を削減し,有効性を維持していることがわかった。
論文 参考訳(メタデータ) (2025-02-03T04:23:33Z) - Superficial Safety Alignment Hypothesis [8.297367440457508]
本稿では,安全アライメントが安全でないモデルに正しい推論方向を選択するよう教えるべきであるとする,表向きの安全アライメント仮説(SSAH)を提案する。
安全に整合した大言語モデル(LLM)における属性クリティカルな4つのコンポーネントを同定する。
本研究は,特定の安全クリティカル成分の凍結を微調整中に行うことにより,新しい作業に適応しつつ,その安全性特性を維持できることを示した。
論文 参考訳(メタデータ) (2024-10-07T19:53:35Z) - Safety Layers in Aligned Large Language Models: The Key to LLM Security [43.805905164456846]
整列 LLM の内部パラメータは、微調整攻撃を受けた場合のセキュリティ劣化に対して脆弱である。
我々の研究は、パラメータレベルでのLLMの整列化におけるセキュリティのメカニズムを明らかにし、モデルの中央に小さな連続した層を識別する。
そこで本稿では, 安全部分調整(SPPFT)方式を提案する。
論文 参考訳(メタデータ) (2024-08-30T04:35:59Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatchingは包括的なPSAのための新しいフレームワークである。
textscSafePatchingはベースラインメソッドよりも包括的なPSAを実現する。
textscSafePatchingは、連続的なPSAシナリオにおいて、その優位性を示している。
論文 参考訳(メタデータ) (2024-05-22T16:51:07Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。