論文の概要: Calibrating the Predictions for Top-N Recommendations
- arxiv url: http://arxiv.org/abs/2408.11596v1
- Date: Wed, 21 Aug 2024 13:06:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:57:19.947503
- Title: Calibrating the Predictions for Top-N Recommendations
- Title(参考訳): トップN勧告のキャリブレーション
- Authors: Masahiro Sato,
- Abstract要約: 従来の校正手法が上位N項目の誤校正予測をもたらすことを示す。
そこで本研究では,トップN項目に着目したキャリブレーションモデルの最適化手法を提案する。
- 参考スコア(独自算出の注目度): 3.176387928678296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Well-calibrated predictions of user preferences are essential for many applications. Since recommender systems typically select the top-N items for users, calibration for those top-N items, rather than for all items, is important. We show that previous calibration methods result in miscalibrated predictions for the top-N items, despite their excellent calibration performance when evaluated on all items. In this work, we address the miscalibration in the top-N recommended items. We first define evaluation metrics for this objective and then propose a generic method to optimize calibration models focusing on the top-N items. It groups the top-N items by their ranks and optimizes distinct calibration models for each group with rank-dependent training weights. We verify the effectiveness of the proposed method for both explicit and implicit feedback datasets, using diverse classes of recommender models.
- Abstract(参考訳): 多くのアプリケーションにおいて、ユーザの好みをよく分類した予測が不可欠である。
推薦システムは一般にユーザ向けのトップNアイテムを選択するため、すべてのアイテムではなく、トップNアイテムのキャリブレーションが重要である。
従来の校正手法は,すべての項目で評価した場合の校正性能に優れるにもかかわらず,上位N項目の誤校正予測をもたらすことを示す。
本稿では,トップN推奨項目の誤校正について述べる。
まず,この目的のための評価指標を定義し,トップN項目に着目したキャリブレーションモデルを最適化するための汎用手法を提案する。
上位N項目をランク別に分類し、ランクに依存したトレーニングウェイトを持つグループごとに異なるキャリブレーションモデルを最適化する。
提案手法の有効性を,多種多様なレコメンデータモデルを用いて,明示的および暗黙的なフィードバックデータセットで検証する。
関連論文リスト
- Preference Diffusion for Recommendation [50.8692409346126]
DMベースのレコメンデータに適した最適化対象であるPreferDiffを提案する。
PreferDiffは、BPRをログライクなランキング目標に変換することで、ユーザの好みをよりよく把握する。
これはDMベースのレコメンデーション向けに特別に設計された、パーソナライズされたランキングの損失である。
論文 参考訳(メタデータ) (2024-10-17T01:02:04Z) - Improved Estimation of Ranks for Learning Item Recommenders with Negative Sampling [4.316676800486521]
レコメンデーションシステムでは、推奨アイテムの数が増加している。
このコストを下げるために、ネガティブな項目をサンプリングすることが一般的になった。
本研究では, 負のサンプリングによって生じるバイアスの補正の利点を実証する。
論文 参考訳(メタデータ) (2024-10-08T21:09:55Z) - Aligning GPTRec with Beyond-Accuracy Goals with Reinforcement Learning [67.71952251641545]
GPTRecはアイテム・バイ・イテムレコメンデーションのためのTop-Kモデルの代替品である。
GPTRecは,従来のグリーディ・リグレード手法よりも精度とセカンダリ・メトリクスのトレードオフが優れていることを示す。
2つのデータセットに対する実験により、GPTRecのNext-K生成アプローチは、古典的なグリージーな再ランク技術よりも精度と二次メトリクスのトレードオフが優れていることが示された。
論文 参考訳(メタデータ) (2024-03-07T19:47:48Z) - Optimizing Partial Area Under the Top-k Curve: Theory and Practice [151.5072746015253]
トップk曲線下部分領域(AUTKC)と呼ばれる新しい計量法を開発した。
AUTKCはより優れた識別能力を持ち、ベイズ最適スコア関数は条件付き確率に対して正しいトップKランクを与えることができる。
提案手法を最適化するために,実証的なサロゲートリスク最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-03T11:09:13Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
我々は、主に良いアイテムを含むことを厳格に保証されたアイテムのセットを返す方法を示す。
本手法は, 擬似発見率の厳密な有限サンプル制御によるランキングモデルを提供する。
我々はYahoo!のランキングとMSMarcoデータセットの学習方法を評価する。
論文 参考訳(メタデータ) (2022-07-04T17:49:25Z) - Introducing a Framework and a Decision Protocol to Calibrate Recommender
Systems [0.0]
本稿では,ジャンルの校正バランスを考慮したレコメンデーションリスト作成手法を提案する。
主な主張は、キャリブレーションはより公平なレコメンデーションを生み出すために肯定的に貢献できるということである。
本稿では,1000以上の校正システムの組み合わせを生成するための概念的フレームワークと決定プロトコルを提案する。
論文 参考訳(メタデータ) (2022-04-07T19:30:55Z) - PEAR: Personalized Re-ranking with Contextualized Transformer for
Recommendation [48.17295872384401]
文脈変換器に基づくパーソナライズされた再ランクモデル(Dubbed PEAR)を提案する。
PEARは、既存のメソッドに対していくつかの大きな改善を行っている。
また、ランキングリスト全体のユーザの満足度を評価するために、リストレベルの分類タスクでPEARのトレーニングを強化する。
論文 参考訳(メタデータ) (2022-03-23T08:29:46Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
本稿では,暗黙的フィードバックの特徴を探究し,推奨するSet2setRankフレームワークを提案する。
提案するフレームワークはモデルに依存しず,ほとんどの推奨手法に容易に適用できる。
論文 参考訳(メタデータ) (2021-05-16T08:06:22Z) - Dynamic-K Recommendation with Personalized Decision Boundary [41.70842736417849]
ランキングと分類の目的を併せ持つ共同学習問題として動的k推薦タスクを開発した。
我々は、BPRMFとHRMの2つの最先端ランキングベースのレコメンデーション手法を対応する動的Kバージョンに拡張する。
2つのデータセットに対する実験結果から,動的Kモデルの方が従来の固定N推奨手法よりも有効であることが示された。
論文 参考訳(メタデータ) (2020-12-25T13:02:57Z) - A Differentiable Ranking Metric Using Relaxed Sorting Operation for
Top-K Recommender Systems [1.2617078020344619]
推薦システムは、項目の選好スコアを計算し、スコアに応じて項目をソートし、上位K項目を高いスコアでフィルタリングすることで、パーソナライズされたレコメンデーションを生成する。
このレコメンデーション手順にはソートやランキング項目が不可欠ですが、エンドツーエンドのモデルトレーニングのプロセスにそれらを組み込むのは簡単ではありません。
これにより、既存の学習目標とレコメンデータのランキングメトリクスの矛盾が生じる。
本稿では,この不整合を緩和し,ランキングメトリクスの微分緩和を利用してレコメンデーション性能を向上させるDRMを提案する。
論文 参考訳(メタデータ) (2020-08-30T10:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。