論文の概要: Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning
- arxiv url: http://arxiv.org/abs/2408.11599v1
- Date: Wed, 21 Aug 2024 13:11:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:57:19.941872
- Title: Cause-Aware Empathetic Response Generation via Chain-of-Thought Fine-Tuning
- Title(参考訳): チェーン・オブ・ソートファインチューニングによる因果認識共感応答生成
- Authors: Xinhao Chen, Chong Yang, Man Lan, Li Cai, Yang Chen, Tu Hu, Xinlin Zhuang, Aimin Zhou,
- Abstract要約: 共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情の重要性が原因の推論を無視している。
そこで我々は,感情と原因をうまく設計したChain-of-Thoughtプロンプトを通じて統合した原因認識型共感生成手法を提案する。
- 参考スコア(独自算出の注目度): 12.766893968788263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empathetic response generation endows agents with the capability to comprehend dialogue contexts and react to expressed emotions. Previous works predominantly focus on leveraging the speaker's emotional labels, but ignore the importance of emotion cause reasoning in empathetic response generation, which hinders the model's capacity for further affective understanding and cognitive inference. In this paper, we propose a cause-aware empathetic generation approach by integrating emotions and causes through a well-designed Chain-of-Thought (CoT) prompt on Large Language Models (LLMs). Our approach can greatly promote LLMs' performance of empathy by instruction tuning and enhancing the role awareness of an empathetic listener in the prompt. Additionally, we propose to incorporate cause-oriented external knowledge from COMET into the prompt, which improves the diversity of generation and alleviates conflicts between internal and external knowledge at the same time. Experimental results on the benchmark dataset demonstrate that our approach on LLaMA-7b achieves state-of-the-art performance in both automatic and human evaluations.
- Abstract(参考訳): 共感反応生成は、対話の文脈を理解し、表現された感情に反応する能力を持つエージェントを与える。
先行研究は、主に話者の感情的ラベルを活用することに重点を置いているが、感情的反応生成において感情の重要性を無視することは、感情的理解と認知的推論のモデル能力の妨げとなる。
本稿では,大規模言語モデル (LLM) 上での CoT (Chain-of-Thought) プロンプトを通じて,感情と原因を統合した原因認識型共感生成手法を提案する。
提案手法は,インタプリタの指導と,インタプリタにおける共感的リスナの役割意識の向上により,LLMの共感能力を大幅に向上させることができる。
さらに、COMETからの因果的外部知識をプロンプトに組み込むことにより、生成の多様性を改善し、内部知識と外部知識の衝突を同時に軽減することを提案する。
評価実験の結果,LLaMA-7bに対する我々のアプローチは,自動評価と人的評価の両方において最先端の性能を達成することが示された。
関連論文リスト
- APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - ECR-Chain: Advancing Generative Language Models to Better Emotion-Cause Reasoners through Reasoning Chains [61.50113532215864]
CEE(Causal Emotion Entailment)は、ターゲット発話で表現される感情を刺激する会話における因果発話を特定することを目的としている。
CEEにおける現在の研究は、主に会話のセマンティックな相互作用と感情的な相互作用をモデル化することに焦点を当てている。
本研究では,会話中の感情表現から刺激を推測するために,ステップバイステップの推論手法である感情・因果関係(ECR-Chain)を導入する。
論文 参考訳(メタデータ) (2024-05-17T15:45:08Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
LLM(Large Language Models)の開発は、人間中心の人工知能(AGI)に希望の光を与えている。
共感は人間にとって重要な感情的属性として機能し、人間中心のAGIにおいて不定の役割を果たす。
本稿では,社会学における自己表現理論にインスパイアされた革新的なエンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2023-12-14T07:38:12Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
本稿では,感情相関を改良した共感対話生成フレームワークを提案する。
具体的には、文脈に基づく感情の相互作用を捉えるために、マルチレゾリューション感情グラフを考案した。
そこで我々は,感情相関強化デコーダを提案し,新しい相関認識アグリゲーションとソフト/ハード戦略を提案する。
論文 参考訳(メタデータ) (2023-11-25T12:47:39Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z) - Improving Empathetic Dialogue Generation by Dynamically Infusing
Commonsense Knowledge [39.536604198392375]
共感的な会話では、個人は他人に対する共感を表現する。
これまでの研究は主に、話者の感情を利用して共感的な反応を生み出すことに焦点を当ててきた。
本稿では,コモンセンス知識選択のための適応モジュールを組み込んだ共感応答生成手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:25:12Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
外部知識の不足により、感情的な対話システムは暗黙の感情を知覚し、限られた対話履歴から感情的な対話を学ぶことが困難になる。
本研究では,情緒的対話生成における感情を明確に理解し,表現するために,常識的知識や情緒的語彙的知識などの外部知識を活用することを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。