End-to-End Cost-Effective Incentive Recommendation under Budget Constraint with Uplift Modeling
- URL: http://arxiv.org/abs/2408.11623v2
- Date: Sat, 24 Aug 2024 20:24:42 GMT
- Title: End-to-End Cost-Effective Incentive Recommendation under Budget Constraint with Uplift Modeling
- Authors: Zexu Sun, Hao Yang, Dugang Liu, Yunpeng Weng, Xing Tang, Xiuqiang He,
- Abstract summary: We propose a novel End-to-End Cost-Effective Incentive Recommendation (E3IR) model under budget constraints.
Specifically, our methods consist of two modules, i.e., the uplift prediction module and the differentiable allocation module.
Our E3IR improves allocation performance compared to existing two-stage approaches.
- Score: 12.160403526724476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern online platforms, incentives are essential factors that enhance user engagement and increase platform revenue. Over recent years, uplift modeling has been introduced as a strategic approach to assign incentives to individual customers. Especially in many real-world applications, online platforms can only incentivize customers with specific budget constraints. This problem can be reformulated as the multi-choice knapsack problem. This optimization aims to select the optimal incentive for each customer to maximize the return on investment. Recent works in this field frequently tackle the budget allocation problem using a two-stage approach. However, this solution is confronted with the following challenges: (1) The causal inference methods often ignore the domain knowledge in online marketing, where the expected response curve of a customer should be monotonic and smooth as the incentive increases. (2) An optimality gap between the two stages results in inferior sub-optimal allocation performance due to the loss of the incentive recommendation information for the uplift prediction under the limited budget constraint. To address these challenges, we propose a novel End-to-End Cost-Effective Incentive Recommendation (E3IR) model under budget constraints. Specifically, our methods consist of two modules, i.e., the uplift prediction module and the differentiable allocation module. In the uplift prediction module, we construct prediction heads to capture the incremental improvement between adjacent treatments with the marketing domain constraints (i.e., monotonic and smooth). We incorporate integer linear programming (ILP) as a differentiable layer input in the allocation module. Furthermore, we conduct extensive experiments on public and real product datasets, demonstrating that our E3IR improves allocation performance compared to existing two-stage approaches.
Related papers
- Deep Generative Demand Learning for Newsvendor and Pricing [7.594251468240168]
We consider data-driven inventory and pricing decisions in the feature-based newsvendor problem.
We propose a novel approach leveraging conditional deep generative models (cDGMs) to address these challenges.
We provide theoretical guarantees for our approach, including the consistency of profit estimation and convergence of our decisions to the optimal solution.
arXiv Detail & Related papers (2024-11-13T14:17:26Z) - Dynamic Pricing for Electric Vehicle Charging [6.1003048508889535]
We develop a novel formulation for the dynamic pricing problem by addressing multiple conflicting objectives efficiently.
A dynamic pricing model quantifies the relationship between demand and price while simultaneously solving multiple conflicting objectives.
Two California charging sites' real-world data validates our approach.
arXiv Detail & Related papers (2024-08-26T10:32:21Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
We address the problem of dynamically pricing complementary items that are sequentially displayed to customers.
Coherent pricing policies for complementary items are essential because optimizing the pricing of each item individually is ineffective.
We empirically evaluate our approach using synthetic settings randomly generated from real-world data, and compare its performance in terms of constraints violation and regret.
arXiv Detail & Related papers (2024-07-08T09:55:31Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - Optimizing Credit Limit Adjustments Under Adversarial Goals Using
Reinforcement Learning [42.303733194571905]
We seek to find and automatize an optimal credit card limit adjustment policy by employing reinforcement learning techniques.
Our research establishes a conceptual structure for applying reinforcement learning framework to credit limit adjustment.
arXiv Detail & Related papers (2023-06-27T16:10:36Z) - Model-based Constrained MDP for Budget Allocation in Sequential
Incentive Marketing [28.395877073390434]
Sequential incentive marketing is an important approach for online businesses to acquire customers, increase loyalty and boost sales.
How to effectively allocate the incentives so as to maximize the return under the budget constraint is less studied in the literature.
We propose an efficient learning algorithm which combines bisection search and model-based planning.
arXiv Detail & Related papers (2023-03-02T08:10:45Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - An End-to-End Framework for Marketing Effectiveness Optimization under
Budget Constraint [25.89397524825504]
We propose a novel end-to-end framework to directly optimize the business goal under budget constraints.
Our core idea is to construct a regularizer to represent the marketing goal and optimize it efficiently using gradient estimation techniques.
Our proposed method is currently deployed to allocate marketing budgets for hundreds of millions of users on a short video platform.
arXiv Detail & Related papers (2023-02-09T07:39:34Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.