論文の概要: CluMo: Cluster-based Modality Fusion Prompt for Continual Learning in Visual Question Answering
- arxiv url: http://arxiv.org/abs/2408.11742v1
- Date: Wed, 21 Aug 2024 16:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:18:16.556947
- Title: CluMo: Cluster-based Modality Fusion Prompt for Continual Learning in Visual Question Answering
- Title(参考訳): CluMo: ビジュアル質問応答における連続学習のためのクラスタベースモダリティ融合プロンプト
- Authors: Yuliang Cai, Mohammad Rostami,
- Abstract要約: 大規模視覚言語モデル(VLM)は、様々なアプリケーション領域で大幅な性能向上を示している。
タスク上でVLMを微調整すると、その一般化能力と新しいタスクの学習能力が低下する。
本稿では,VLM の新しいプロンプトベースCL法,すなわち $textbfClu$ster-based $textbfMo$dality Fusion Prompt (textbfCluMo)を提案する。
- 参考スコア(独自算出の注目度): 23.360714576158905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large vision-language models (VLMs) have shown significant performance boost in various application domains. However, adopting them to deal with several sequentially encountered tasks has been challenging because finetuning a VLM on a task normally leads to reducing its generalization power and the capacity of learning new tasks as well as causing catastrophic forgetting on previously learned tasks. Enabling using VLMs in multimodal continual learning (CL) settings can help to address such scenarios. To improve generalization capacity and prevent catastrophic forgetting, we propose a novel prompt-based CL method for VLMs, namely $\textbf{Clu}$ster-based $\textbf{Mo}$dality Fusion Prompt (\textbf{CluMo}). We design a novel \textbf{Key-Key-Prompt} pair, where each prompt is associated with a visual prompt key and a textual prompt key. We adopt a two-stage training strategy. During the first stage, the single-modal keys are trained via $K$-means clustering algorithm to help select the best semantically matched prompt. During the second stage, the prompt keys are frozen, the selected prompt is attached to the input for training the VLM in the CL scenario. Experiments on two benchmarks demonstrate that our method achieves SOTA performance.
- Abstract(参考訳): 大規模視覚言語モデル(VLM)は、様々なアプリケーション領域で大幅な性能向上を示している。
しかし, タスク上でのVLMの微調整は, 一般化能力の低下や新しいタスクの学習能力の低下を招き, これまでに学習したタスクの悲惨な忘れ込みを招いたため, 逐次的に遭遇したタスクに対処することが困難である。
マルチモーダル連続学習(CL)設定でのVLMの使用は、このようなシナリオに対処するのに役立ちます。
一般化能力の向上と破滅的忘れを防止するため,VLMの新規なプロンプトベースCL法,すなわち$\textbf{Clu}$ster-based $\textbf{Mo}$dality Fusion Prompt (\textbf{CluMo})を提案する。
そこで我々は,視覚的プロンプトキーとテキスト的プロンプトキーとを関連づけた,新しい‘textbf{Key-Key-Prompt} ペアを設計する。
私たちは2段階のトレーニング戦略を採用しています。
最初の段階では、シングルモーダルキーは$K$-meansクラスタリングアルゴリズムでトレーニングされ、最もセマンティックにマッチしたプロンプトを選択するのに役立つ。
第2段階では、プロンプトキーは凍結され、選択されたプロンプトはCLシナリオでVLMをトレーニングするための入力にアタッチされる。
2つのベンチマーク実験により,本手法がSOTAの性能向上を実証した。
関連論文リスト
- Mixture of Prompt Learning for Vision Language Models [12.828490399811376]
ルーティングモジュールを組み込んだソフトプロンプト学習手法の混合を提案する。
このモジュールはデータセットのさまざまなスタイルをキャプチャし、インスタンス毎に最も適切なプロンプトを動的に選択することができる。
また、意味的にグループ化されたテキストレベルの監視を実装し、各ソフトプロンプトを、そのグループから手動で設計されたテンプレートのトークン埋め込みで初期化する。
論文 参考訳(メタデータ) (2024-09-18T14:25:02Z) - Semantic Residual Prompts for Continual Learning [21.986800282078498]
提案手法は,最先端CLアプローチとゼロショットCLIPテストの両方で有意に優れていた。
我々の発見は、バックボーンモデルの事前学習知識に相当な領域ギャップを持つデータセットにも当てはまる。
論文 参考訳(メタデータ) (2024-03-11T16:23:38Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - Sweeping Heterogeneity with Smart MoPs: Mixture of Prompts for LLM Task
Adaptation [45.90925587972781]
大規模言語モデル(LLM)は、テキスト要約や数学的問題など、さまざまなタスクを解く能力を持つ。
計算コストが高いため、現在のトレンドは、プロンプトインストラクションチューニングを使用して、モノリシックで事前訓練されたLLMを、新しい-しかししばしば個別の-下流タスクのためによりよく調整することである。
MoPはマルチタスク、マルチソースシナリオにおいて、プロンプトトレーニングの"干渉"を同時に緩和することができる。
論文 参考訳(メタデータ) (2023-10-04T14:11:12Z) - TransPrompt v2: A Transferable Prompting Framework for Cross-task Text
Classification [37.824031151922604]
そこで本研究では,テキスト分類タスク間の数ショット学習を実現するための,トランスプロンプトv2を提案する。
類似したタスクを学習するために、メタラーナーを訓練するためにマルチタスクメタ知識獲得(MMA)手順を用いる。
遠隔タスクを学習するために、タスクタイプ記述をプロンプトに注入し、タイプ内およびタイプ間プロンプト埋め込みをキャプチャする。
論文 参考訳(メタデータ) (2023-08-29T04:16:57Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - POP: Prompt Of Prompts for Continual Learning [59.15888651733645]
継続的な学習(CL)は、破滅的な忘れをせずに新しい概念を学習する人間の能力を模倣することを目的としている。
POP学習を用いた基礎モデルでは,古典的なCL手法よりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-06-14T02:09:26Z) - Adapting Pre-trained Language Models to Vision-Language Tasks via
Dynamic Visual Prompting [83.21164539349273]
事前学習型言語モデル (PLM) はマルチメディア研究においてその役割を担っている。
本稿では,視覚言語推論タスクのスタンドアロンモデルとしてのPLMの探索に焦点をあてる。
ダイナミックビジュアル・プロンプティング(DVP)と呼ばれるPLMのための新しいトランスファー学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T07:19:28Z) - From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language
Models [111.42052290293965]
大規模言語モデル(LLM)は、新しい言語タスクに対して優れたゼロショット一般化を証明している。
視覚と言語データに対するエンドツーエンドのトレーニングは、切断を橋渡しするかもしれないが、柔軟性がなく、計算コストがかかる。
上述したモダリティとタスクの切断をブリッジできるプロンプトを提供するプラグイン・アンド・プレイモジュールであるemphImg2Promptを提案する。
論文 参考訳(メタデータ) (2022-12-21T08:39:36Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
本稿では,視覚と言語分岐の両方を対象としたマルチモーダル・プロンプト・ラーニング(MaPLe)を提案し,視覚と言語表現の整合性を改善する。
最先端のCo-CoOpと比較すると、MaPLeは優れた性能を示し、新規クラスでは3.45%の絶対的な向上を達成している。
論文 参考訳(メタデータ) (2022-10-06T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。