論文の概要: Prompt Highlighter: Interactive Control for Multi-Modal LLMs
- arxiv url: http://arxiv.org/abs/2312.04302v2
- Date: Wed, 20 Mar 2024 23:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 19:37:15.581973
- Title: Prompt Highlighter: Interactive Control for Multi-Modal LLMs
- Title(参考訳): Prompt Highlighter:マルチモードLCMのインタラクティブ制御
- Authors: Yuechen Zhang, Shengju Qian, Bohao Peng, Shu Liu, Jiaya Jia,
- Abstract要約: 本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
- 参考スコア(独自算出の注目度): 50.830448437285355
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation. Multi-modal LLMs empower multi-modality understanding with the capability of semantic generation yet bring less explainability and heavier reliance on prompt contents due to their autoregressive generative nature. While manipulating prompt formats could improve outputs, designing specific and precise prompts per task can be challenging and ineffective. To tackle this issue, we introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation. Motivated by the classifier-free diffusion guidance, we form regular and unconditional context pairs based on highlighted tokens, demonstrating that the autoregressive generation in models can be guided in a classifier-free way. Notably, we find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs. Our approach is compatible with current LLMs and VLMs, achieving impressive customized generation results without training. Experiments confirm its effectiveness in focusing on input contexts and generating reliable content. Without tuning on LLaVA-v1.5, our method secured 70.7 in the MMBench test and 1552.5 in MME-perception. The code is available at: https://github.com/dvlab-research/Prompt-Highlighter/
- Abstract(参考訳): 本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
マルチモーダルLLMは、セマンティックジェネレーションの能力でマルチモーダル理解を向上するが、自己回帰的生成性により、説明可能性の低下と、プロンプト内容への依存度がより高くなる。
プロンプトフォーマットを操作することでアウトプットを改善することができるが、タスクごとに特定のプロンプトを設計することは困難で非効率である。
この問題に対処するために、ユーザが特定のプロンプトスパンをハイライトして、生成中のフォーカスをインタラクティブに制御できる新しい推論手法であるPrompt Highlighterを導入する。
分類器フリー拡散誘導により強調されたトークンに基づいて正規および無条件のコンテキストペアを形成し、モデルにおける自己回帰生成を分類器フリーな方法でガイドできることを実証する。
特に、推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
我々のアプローチは、現在のLLMやVLMと互換性があり、トレーニングなしで優れたカスタマイズされた生成結果が得られる。
実験は、入力コンテキストに着目し、信頼性のあるコンテンツを生成することの有効性を確認する。
LLaVA-v1.5をチューニングせずにMMBench試験で70.7, MME知覚で1552.5を確保した。
コードは、https://github.com/dvlab-research/Prompt-Highlighter/で入手できる。
関連論文リスト
- Push the Limit of Multi-modal Emotion Recognition by Prompting LLMs with Receptive-Field-Aware Attention Weighting [11.926100290196828]
本稿では,受動的フィールド認識重み付けによる大規模言語モデルの実現により,あるバニラモデルの性能を向上させるフレームワークであるLanternを提案する。
実験では、バニラモデルCORECTとSDTがGPT-4またはLlama-3.1-405Bでランタンに配備された。
論文 参考訳(メタデータ) (2024-11-26T18:35:24Z) - Enhancing Instruction-Following Capability of Visual-Language Models by Reducing Image Redundancy [37.471419716572086]
LLM(Large Language Model)とMLLM(Multimodal Large Language Model)の命令追従能力には大きなギャップがある。
本稿では,このギャップを軽減するために,VMTC(Visual-Modality Token Compression)とCMAI(Cross-Modality Attention Inhibition)戦略を提案する。
論文 参考訳(メタデータ) (2024-11-23T05:03:32Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs [30.333277284839053]
大規模言語モデル(LLM)は、高品質な応答を生成することに成功している。
応答品質を向上させる既存の方法は、しばしば即時改善モデルを含む。
我々は、LLMにより効果的な応答を提供するための自己指示型インコンテキスト学習フレームワークを導入する。
論文 参考訳(メタデータ) (2024-09-03T02:42:39Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的参照を注入する学習自由手法を提案する。
MLLMにおけるテキストプロンプトトークンと視覚トークンの関係を観察する。
我々は,エネルギー関数に基づいて学習可能な視覚トークンを最適化し,注目マップにおける参照領域の強度を高める。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
本稿では,視覚と言語分岐の両方を対象としたマルチモーダル・プロンプト・ラーニング(MaPLe)を提案し,視覚と言語表現の整合性を改善する。
最先端のCo-CoOpと比較すると、MaPLeは優れた性能を示し、新規クラスでは3.45%の絶対的な向上を達成している。
論文 参考訳(メタデータ) (2022-10-06T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。