論文の概要: MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
- arxiv url: http://arxiv.org/abs/2408.11743v1
- Date: Wed, 21 Aug 2024 16:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 16:18:16.554260
- Title: MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models
- Title(参考訳): MARLIN:大規模言語モデルにおける混合精度自動回帰並列推論
- Authors: Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten Hoefler, Dan Alistarh,
- Abstract要約: 本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
- 参考スコア(独自算出の注目度): 58.3342517278868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As inference on Large Language Models (LLMs) emerges as an important workload in machine learning applications, weight quantization has become a standard technique for efficient GPU deployment. Quantization not only reduces model size, but has also been shown to yield substantial speedups for single-user inference, due to reduced memory movement, with low accuracy impact. Yet, it remains open whether speedups are achievable also in \emph{batched} settings with multiple parallel clients, which are highly relevant for practical serving. It is unclear whether GPU kernels can be designed to remain practically memory-bound, while supporting the substantially increased compute requirements of batched workloads. This paper resolves this question positively by describing the design of Mixed-precision Auto-Regressive LINear kernels, called MARLIN. Concretely, given a model whose weights are compressed via quantization to, e.g., 4 bits per element, MARLIN shows that batchsizes up to 16-32 can be supported with close to maximum ($4\times$) quantization speedup, and larger batchsizes up to 64-128 with gradually decreasing, but still significant, acceleration. MARLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining, and bespoke quantization support. Our experiments show that MARLIN's near-optimal performance on individual LLM layers across different scenarios can also lead to end-to-end LLM inference speedups (of up to $2.8\times$) when integrated with the popular vLLM serving engine. Finally, MARLIN is extensible to further compression techniques, like NVIDIA 2:4 sparsity, leading to additional speedups.
- Abstract(参考訳): 機械学習アプリケーションにおいて、Large Language Models (LLMs) の推論が重要なワークロードとして出現するにつれて、重み付け量子化は、効率的なGPUデプロイメントの標準技術となっている。
量子化はモデルサイズを減少させるだけでなく、メモリの動きが小さく、精度が低いため、シングルユーザー推論においてかなりのスピードアップをもたらすことが示されている。
しかし、複数の並列クライアントを持つ \emph{batched} 設定でも、スピードアップが達成可能かどうかは不明だ。
GPUカーネルが実質的にメモリバウンドとして設計できるかどうかは不明だが、バッチワークロードの計算要求が大幅に増加するのをサポートする。
本稿では,MARLIN(Mixed-precision Auto-Regressive LINear kernels)を設計し,この問題を肯定的に解決する。
具体的には、量子化によって重みが圧縮されたモデル(例えば、要素あたり4ビット)を考えると、MARLINは16-32までのバッチサイズを最大(4\times$)の量子化スピードアップでサポートでき、より大きいバッチサイズは64-128まで、徐々に減少するが、それでも重要な加速をサポートする。
MARLINは、非同期メモリアクセス、複雑なタスクスケジューリングとパイプライン化、およびbespoke量子化サポートといった技術の組み合わせによってこれを達成している。
実験の結果、MARLINの個々のLCM層上での最適性能は、一般的なvLLMサービスエンジンと統合した場合、エンド・ツー・エンドのLSM推論の高速化(最大2.8\times$)につながることが示された。
最後に、MARLINはNVIDIA 2:4のようなさらなる圧縮技術に拡張可能で、さらなるスピードアップをもたらす。
関連論文リスト
- COMET: Towards Partical W4A4KV4 LLMs Serving [37.30529940231099]
量子化は、端末デバイスやクラウドデータセンターで大規模言語モデル(LLM)を提供するオーバーヘッドを低減するための圧縮技術である。
本稿では,ほとんどのアクティベーションを4ビットに圧縮し,精度損失を無視できる新しい混合精度量子化アルゴリズム(FMPQ)を提案する。
我々は、最適化されたW4Axカーネルを推論フレームワークCOMETに統合し、人気のあるLLMをサポートするための効率的な管理を提供する。
論文 参考訳(メタデータ) (2024-10-16T02:16:53Z) - Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTEはLUT量子化LLM用のフレキシブルなルックアップテーブルエンジンである。
バッチサイズ32と量子化グループサイズ128では、FLUTEカーネルは既存のGEMMカーネルよりも2〜4倍高速である。
論文 参考訳(メタデータ) (2024-07-15T17:55:42Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
重み付けとアクティベーションの両方を4ビットにキャストすることで、大きな生成モデルに対する推論計算の大部分が実行可能であることを示す。
これをQUIKと呼ばれるハイブリッド量子化戦略により実現し、重みとアクティベーションの大部分を4ビットに圧縮する。
我々は、QUIKフォーマットを高効率なレイヤワイドランタイムに適合させるGPUカーネルを提供し、これにより、エンドツーエンドのスループットが3.4倍に向上する。
論文 参考訳(メタデータ) (2023-10-13T17:15:05Z) - Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM [6.85331857224501]
LLM(Large Language Models)は、メモリ要件と計算能力に関する重要なハードウェア上の課題を提起する。
LLMには2つの主要な量子化スキームがある: 粗粒(textite.g.$ channel-wise)量子化と細粒(textite.g.$ group-wise)量子化である。
我々は、高速な推論速度を確保しつつ優れた性能を維持するLLMのための新しいA8W4量子化であるDual Grained Quantization (DGQ)を紹介する。
論文 参考訳(メタデータ) (2023-10-07T14:50:28Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight
Compression [76.73007709690306]
Sparse-Quantized Representation (SpQR) は,新しい圧縮フォーマットと量子化技術である。
SpQRは、高精度なLLaMAとFalcon LLMのパープレキシティにおいて、1%未満の相対的精度の損失を達成している。
これにより、1台の24GBのコンシューマGPU上で33BパラメータのLSMを実行でき、15%のスピードアップでパフォーマンスの劣化は発生しない。
論文 参考訳(メタデータ) (2023-06-05T17:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。