論文の概要: SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models
- arxiv url: http://arxiv.org/abs/2405.14917v2
- Date: Sun, 25 May 2025 08:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:41.513998
- Title: SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models
- Title(参考訳): SliM-LLM:大規模言語モデルのためのサリエンス駆動混合精度量子化
- Authors: Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Qinshuo Liu, Xianglong Liu, Luca Benini, Michele Magno, Shiming Zhang, Xiaojuan Qi,
- Abstract要約: 後学習量子化(PTQ)は,大規模言語モデル(LLM)の圧縮に有効な手法である
本稿では,SliM-LLMを提案する。SliM-LLMは,グループ単位でビット幅を割り当てるサリエンス駆動の混合精度量子化フレームワークである。
実験により、SliM-LLMは低ビット幅の様々なLLMにおいて優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 63.118592279833656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-training quantization (PTQ) is an effective technique for compressing large language models (LLMs). However, while uniform-precision quantization is computationally efficient, it often compromises model performance. To address this, we propose SliM-LLM, a salience-driven mixed-precision quantization framework that allocates bit-widths at the group-wise. Our approach leverages the observation that important weights follow a structured distribution and introduces two key components: \textbf{1)} \textit{Salience-Determined Bit Allocation} adaptively assigns bit-widths to groups within each layer based on their salience; and \textbf{2)} \textit{Salience-Weighted Quantizer Calibration} optimizes quantizer parameters by incorporating element-level salience. With its structured partitioning, SliM-LLM provides a hardware-friendly solution that matches the efficiency of uniform quantization methods while improving accuracy. Experiments show that SliM-LLM achieves superior performance across various LLMs at low bit-widths. For example, a 2-bit quantized LLaMA-7B model reduces memory usage by nearly 6x compared to the floating-point baseline, decreases perplexity by 48\% compared to state-of-the-art gradient-free PTQ methods, and maintains GPU inference speed. Additionally, the extended version, SliM-LLM$^+$, which incorporates gradient-based quantization, further reduces perplexity by 35.1\%. Our code is available at https://github.com/Aaronhuang-778/SliM-LLM
- Abstract(参考訳): 後学習量子化(PTQ)は,大規模言語モデル(LLM)の圧縮に有効な手法である。
しかし、一様精度量子化は計算的に効率的であるが、しばしばモデルの性能を損なう。
そこで本稿では,SliM-LLMを提案する。SliM-LLMはサリエンス駆動の混合精度量子化フレームワークで,ビット幅をグループ単位で割り当てる。
我々のアプローチは、重要な重みが構造分布に従うという観察を生かして、2つの重要な成分を導入する: \textbf{1)} \textit{Salience-Determined Bit Allocation} は、各層内のグループに適応的にビット幅を割り当てる; \textbf{2} \textit{Salience-Weighted Quantizer Calibration} は、要素レベルのサリエンスを組み込むことで、量子化パラメータを最適化する。
構造化パーティショニングにより、SliM-LLMはハードウェアフレンドリーなソリューションを提供する。
実験により、SliM-LLMは低ビット幅の様々なLLMにおいて優れた性能を発揮することが示された。
例えば、2ビット量子化LLaMA-7Bモデルでは、浮動小数点ベースラインに比べてメモリ使用量が6倍近く減少し、最先端の勾配のないPTQ法に比べて48倍のパープレキシティが減少し、GPU推論速度が維持される。
さらに、勾配に基づく量子化を取り入れた拡張版であるSliM-LLM$^+$は、さらに複雑度を35.1\%削減する。
私たちのコードはhttps://github.com/Aaronhuang-778/SliM-LLMで利用可能です。
関連論文リスト
- FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQは、ソフトウェアとハードウェアの共同設計であり、大規模言語モデルの低ビット細粒度混合精度量子化のための設計である。
重みをよりきめ細かいクラスタに分割し、これらのクラスタ内の外れ値の分布を考慮する。
近似平均ビット幅でのSOTA混合精度量子化アルゴリズムと比較してモデル精度が向上する。
論文 参考訳(メタデータ) (2025-04-28T12:47:23Z) - Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
大規模言語モデル(LLM)は、コード生成において印象的な能力を示しており、特に自然言語で記述された要求を自動的に実装する。
LLMはメモリ(そして結果として炭素)のフットプリントに重大な課題をもたらす。
LLM量子化の新しいフロンティアは4ビット精度であり、平均メモリフットプリントが70%減少する。
論文 参考訳(メタデータ) (2025-03-10T09:26:08Z) - Channel-Wise Mixed-Precision Quantization for Large Language Models [47.00361921910259]
大規模言語モデル(LLM)は、幅広い言語タスクで顕著な成功を収めている。
重みのみの量子化は、LCMのメモリフットプリントを削減するための有望な解決策である。
本稿では,CMPQ(Channel-Wise Mixed-Precision Quantization)を提案する。
論文 参考訳(メタデータ) (2024-10-16T21:34:41Z) - SLiM: One-shot Quantized Sparse Plus Low-rank Approximation of LLMs [2.7624021966289605]
大規模言語モデル(LLM)は、自然言語の理解と生成タスクに革命をもたらした。
LLMは、大きなパラメータサイズのため、メモリ消費が高く、推論時間が遅い。
本稿では,1ショットの量子スパースプラス低ランク近似を用いたLEMの圧縮手法であるSLiMを紹介する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - OneBit: Towards Extremely Low-bit Large Language Models [66.29839811207617]
本稿では, LLMの重量行列を1ビットに大胆に定量化し, LLMの極低ビット幅展開への道を開く。
実験によると、OneBitは(LLaMAモデルの非量子化性能の少なくとも81%)優れたパフォーマンスを、堅牢なトレーニングプロセスで達成している。
論文 参考訳(メタデータ) (2024-02-17T14:26:57Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
論文 参考訳(メタデータ) (2023-05-23T15:20:01Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。