論文の概要: State-of-the-art in Robot Learning for Multi-Robot Collaboration: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2408.11822v1
- Date: Sat, 3 Aug 2024 21:22:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:11:11.621777
- Title: State-of-the-art in Robot Learning for Multi-Robot Collaboration: A Comprehensive Survey
- Title(参考訳): マルチロボットコラボレーションのためのロボット学習の現状と課題:総合的調査
- Authors: Bin Wu, C Steve Suh,
- Abstract要約: この基盤上に構築されたマルチロボットシステム(MRS)は劇的な進化を遂げている。
人工知能技術とロボットハードウェアの融合は、MSSに幅広い応用可能性をもたらしている。
本稿では,マルチロボット協調におけるロボット学習の現状について概説する。
- 参考スコア(独自算出の注目度): 2.686336957004475
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the continuous breakthroughs in core technology, the dawn of large-scale integration of robotic systems into daily human life is on the horizon. Multi-robot systems (MRS) built on this foundation are undergoing drastic evolution. The fusion of artificial intelligence technology with robot hardware is seeing broad application possibilities for MRS. This article surveys the state-of-the-art of robot learning in the context of Multi-Robot Cooperation (MRC) of recent. Commonly adopted robot learning methods (or frameworks) that are inspired by humans and animals are reviewed and their advantages and disadvantages are discussed along with the associated technical challenges. The potential trends of robot learning and MRS integration exploiting the merging of these methods with real-world applications is also discussed at length. Specifically statistical methods are used to quantitatively corroborate the ideas elaborated in the article.
- Abstract(参考訳): コアテクノロジーの継続的なブレークスルーにより、ロボットシステムの大規模統合が日々の生活に広まりつつある。
この基盤上に構築されたマルチロボットシステム(MRS)は劇的な進化を遂げている。
ロボットハードウェアと人工知能技術の融合は、MSSの幅広い応用可能性を示している。この記事では、近年のMRC(Multi-Robot Cooperation)の文脈で、ロボット学習の現状を調査する。
人間や動物にインスパイアされたロボット学習手法(あるいはフレームワーク)を概ね検討し、関連する技術的課題とともにその利点と欠点について議論する。
ロボット学習とMSS統合の潜在的なトレンドは,これらの手法と実世界の応用を融合させることによっても議論されている。
具体的に統計学的手法は、この記事で詳述されたアイデアを定量的に相関づけるために用いられる。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
ロボットポリシーを現在の状況に基盤付けるためのエージェントベースのフレームワークを提案する。
提案するフレームワークは、特定の役割のために設計された会話エージェントのセットで構成されている。
弊社のアプローチは、操作ポリシーを効果的にガイドし、成功率を大幅に向上させることを実証する。
論文 参考訳(メタデータ) (2024-10-09T02:00:37Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion [0.0]
本稿では,資源制約型ロボットに特化して設計されたハイブリッド音声認識(ASR)システムを提案する。
提案手法は、隠れマルコフモデル(HMM)とディープラーニングモデルを組み合わせて、ソケットプログラミングを利用して処理タスクを効果的に分散する。
このアーキテクチャでは、HMMベースの処理がロボット内で行われ、別のPCがディープラーニングモデルを処理する。
論文 参考訳(メタデータ) (2023-09-11T15:28:19Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - Distributed Reinforcement Learning for Robot Teams: A Review [10.92709534981466]
近年のセンサ,アクティベーション,計算の進歩により,マルチロボットシステムへの扉が開きつつある。
コミュニティはモデルフリーのマルチエージェント強化学習を活用して、マルチロボットシステムのための効率的でスケーラブルなコントローラを開発した。
最近の知見:分散MSSは、非定常性や部分観測可能性などの根本的な課題に直面している。
論文 参考訳(メタデータ) (2022-04-07T15:34:19Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。