論文の概要: The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights
- arxiv url: http://arxiv.org/abs/2408.11827v1
- Date: Mon, 5 Aug 2024 18:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:01:15.523625
- Title: The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights
- Title(参考訳): GPTモデルにおける概念解釈の力学:解釈的考察
- Authors: Nura Aljaafari, Danilo S. Carvalho, André Freitas,
- Abstract要約: 本稿では,大規模言語モデルにおける概念化機構を明らかにする知識編集の革新的バリエーションである概念編集を紹介する。
我々は、トランスモデルのマルチ層パーセプトロン(MLP)、マルチヘッドアテンション(MHA)、および隠れ状態成分を解析する。
我々の研究は、LLMにおける複雑な階層化されたセマンティック処理の性質と、これらのモデルにおける特定の概念の分離と修正の課題を強調している。
- 参考スコア(独自算出の注目度): 10.777646083061395
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Locating and editing knowledge in large language models (LLMs) is crucial for enhancing their accuracy, safety, and inference rationale. We introduce ``concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within these models. Using the reverse dictionary task, inference tracing, and input abstraction, we analyse the Multi-Layer Perceptron (MLP), Multi-Head Attention (MHA), and hidden state components of transformer models. Our results reveal distinct patterns: MLP layers employ key-value retrieval mechanism and context-dependent processing, which are highly associated with relative input tokens. MHA layers demonstrate a distributed nature with significant higher-level activations, suggesting sophisticated semantic integration. Hidden states emphasise the importance of the last token and top layers in the inference process. We observe evidence of gradual information building and distributed representation. These observations elucidate how transformer models process semantic information, paving the way for targeted interventions and improved interpretability techniques. Our work highlights the complex, layered nature of semantic processing in LLMs and the challenges of isolating and modifying specific concepts within these models.
- Abstract(参考訳): 大規模言語モデル(LLM)における知識の配置と編集は、その正確性、安全性、推論の合理性を高めるために不可欠である。
本稿では,これらのモデルにおける概念化機構を明らかにする知識編集の革新的バリエーションである「概念編集」を紹介する。
逆辞書タスク、推論トレース、入力抽象化を用いて、トランスフォーマーモデルの多層パーセプトロン(MLP)、MHA(Multi-Head Attention)および隠れ状態成分を解析する。
MLP層にはキー値検索機構とコンテキスト依存処理が採用されており、相対的な入力トークンと密接に関連している。
MHA層は、高度な高度なアクティベーションを持つ分散特性を示し、洗練されたセマンティック統合を示唆している。
隠れた状態は、推論プロセスにおける最後のトークンとトップレイヤの重要性を強調します。
段階的な情報構築と分散表現の証拠を観察する。
これらの観察により、トランスフォーマーモデルが意味情報をどう処理するかが解明され、ターゲットとなる介入への道が開かれ、解釈可能性の向上が図られる。
我々の研究は、LLMにおける複雑な階層化されたセマンティック処理の性質と、これらのモデルにおける特定の概念の分離と修正の課題を強調している。
関連論文リスト
- Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP)は、大規模言語モデルが言語構造をどのように処理するかを分析するために設計された方法論である。
CAPは様々なモデルレベルで構成型プールを通してモデル活性化に介入する。
論文 参考訳(メタデータ) (2024-10-16T18:10:50Z) - TokenSHAP: Interpreting Large Language Models with Monte Carlo Shapley Value Estimation [0.0]
TokenSHAPは、大規模言語モデルを解釈する新しい方法である。
これは、協調ゲーム理論から自然言語処理へのシェープリー値の適応である。
トークンの重要性を解釈可能で定量的に測定する。
論文 参考訳(メタデータ) (2024-07-14T08:07:50Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked Autoencoder (MAE) は近年,様々な視覚タスクにおいて顕著な成功を収めている。
MAEに関する興味深い経験的観察の出現にもかかわらず、理論的に原理化された理解はいまだに欠如している。
論文 参考訳(メタデータ) (2023-06-08T03:00:10Z) - Demystify Self-Attention in Vision Transformers from a Semantic
Perspective: Analysis and Application [21.161850569358776]
自己認識機構はコンピュータビジョンや自然言語処理など多くの分野で大きな成功を収めている。
多くの既存の視覚変換器(ViT)は、単に視覚タスクに適応するためにNLPから固有のトランスフォーマー設計を施している。
本稿では,低レベル表現を中間レベル空間にマッピングする典型的な画像処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-13T15:18:31Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
本稿では,既存の事前学習言語モデルを階層型デコーダネットワークに組み込むことを提案する。
第一原理構造をセマンティックアンカーとすることで、2つの新しい中間管理タスクを提案する。
いくつかのセマンティック解析ベンチマークで集中的な実験を行い、我々のアプローチがベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T07:27:29Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。