The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights
- URL: http://arxiv.org/abs/2408.11827v1
- Date: Mon, 5 Aug 2024 18:50:08 GMT
- Title: The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights
- Authors: Nura Aljaafari, Danilo S. Carvalho, André Freitas,
- Abstract summary: We introduce concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within large language models.
We analyse the Multi-Layer Perceptron (MLP), Multi-Head Attention (MHA), and hidden state components of transformer models.
Our work highlights the complex, layered nature of semantic processing in LLMs and the challenges of isolating and modifying specific concepts within these models.
- Score: 10.777646083061395
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Locating and editing knowledge in large language models (LLMs) is crucial for enhancing their accuracy, safety, and inference rationale. We introduce ``concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within these models. Using the reverse dictionary task, inference tracing, and input abstraction, we analyse the Multi-Layer Perceptron (MLP), Multi-Head Attention (MHA), and hidden state components of transformer models. Our results reveal distinct patterns: MLP layers employ key-value retrieval mechanism and context-dependent processing, which are highly associated with relative input tokens. MHA layers demonstrate a distributed nature with significant higher-level activations, suggesting sophisticated semantic integration. Hidden states emphasise the importance of the last token and top layers in the inference process. We observe evidence of gradual information building and distributed representation. These observations elucidate how transformer models process semantic information, paving the way for targeted interventions and improved interpretability techniques. Our work highlights the complex, layered nature of semantic processing in LLMs and the challenges of isolating and modifying specific concepts within these models.
Related papers
- Interpreting token compositionality in LLMs: A robustness analysis [10.777646083061395]
Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.
CAP intervenes in model activations through constituent-based pooling at various model levels.
arXiv Detail & Related papers (2024-10-16T18:10:50Z) - TokenSHAP: Interpreting Large Language Models with Monte Carlo Shapley Value Estimation [0.0]
TokenSHAP is a novel method for interpreting large language models.
It adapts Shapley values from cooperative game theory to natural language processing.
It provides interpretable, quantitative measures of token importance.
arXiv Detail & Related papers (2024-07-14T08:07:50Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked autoencoder (MAE) has recently achieved prominent success in a variety of vision tasks.
Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking.
arXiv Detail & Related papers (2023-06-08T03:00:10Z) - Demystify Self-Attention in Vision Transformers from a Semantic
Perspective: Analysis and Application [21.161850569358776]
Self-attention mechanisms have achieved great success in many fields such as computer vision and natural language processing.
Many existing vision transformer (ViT) works simply inherent transformer designs from NLP to adapt vision tasks.
This paper introduces a typical image processing technique, which maps low-level representations into mid-level spaces, and annotates extensive discrete keypoints with semantically rich information.
arXiv Detail & Related papers (2022-11-13T15:18:31Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.