Interpreting token compositionality in LLMs: A robustness analysis
- URL: http://arxiv.org/abs/2410.12924v1
- Date: Wed, 16 Oct 2024 18:10:50 GMT
- Title: Interpreting token compositionality in LLMs: A robustness analysis
- Authors: Nura Aljaafari, Danilo S. Carvalho, André Freitas,
- Abstract summary: Constituent-Aware Pooling (CAP) is a methodology designed to analyse how large language models process linguistic structures.
CAP intervenes in model activations through constituent-based pooling at various model levels.
- Score: 10.777646083061395
- License:
- Abstract: Understanding the internal mechanisms of large language models (LLMs) is integral to enhancing their reliability, interpretability, and inference processes. We present Constituent-Aware Pooling (CAP), a methodology designed to analyse how LLMs process compositional linguistic structures. Grounded in principles of compositionality, mechanistic interpretability, and information gain theory, CAP systematically intervenes in model activations through constituent-based pooling at various model levels. Our experiments on inverse definition modelling, hypernym and synonym prediction reveal critical insights into transformers' limitations in handling compositional abstractions. No specific layer integrates tokens into unified semantic representations based on their constituent parts. We observe fragmented information processing, which intensifies with model size, suggesting that larger models struggle more with these interventions and exhibit greater information dispersion. This fragmentation likely stems from transformers' training objectives and architectural design, preventing systematic and cohesive representations. Our findings highlight fundamental limitations in current transformer architectures regarding compositional semantics processing and model interpretability, underscoring the critical need for novel approaches in LLM design to address these challenges.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - The Mechanics of Conceptual Interpretation in GPT Models: Interpretative Insights [10.777646083061395]
We introduce concept editing'', an innovative variation of knowledge editing that uncovers conceptualisation mechanisms within large language models.
We analyse the Multi-Layer Perceptron (MLP), Multi-Head Attention (MHA), and hidden state components of transformer models.
Our work highlights the complex, layered nature of semantic processing in LLMs and the challenges of isolating and modifying specific concepts within these models.
arXiv Detail & Related papers (2024-08-05T18:50:08Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
This work introduces a novel Bayesian prompting approach that facilitates training-free Bayesian inference with large language models.
Our results indicate that the model effectively enhances confidence elicitation and text generation quality, demonstrating its potential to improve AI language understanding systems.
arXiv Detail & Related papers (2024-06-08T16:35:31Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
We introduce textttHi-CoDecomposition, a novel framework designed to enhance model interpretability through structured concept analysis.
Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process.
arXiv Detail & Related papers (2024-05-29T00:36:56Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component.
We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding.
arXiv Detail & Related papers (2024-05-23T14:24:23Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) is designed to investigate LLM competence in the context of specific tasks.
We develop a new approach for performing causal probing interventions using gradient-based adversarial attacks.
We carry out a case study of CALM using these interventions to analyze and compare LLM competence across a variety of lexical inference tasks.
arXiv Detail & Related papers (2023-03-01T08:53:36Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.