論文の概要: MicroXercise: A Micro-Level Comparative and Explainable System for Remote Physical Therapy
- arxiv url: http://arxiv.org/abs/2408.11837v1
- Date: Tue, 6 Aug 2024 22:39:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:01:15.507030
- Title: MicroXercise: A Micro-Level Comparative and Explainable System for Remote Physical Therapy
- Title(参考訳): MicroXercise:遠隔理学療法のためのマイクロレベル比較および説明可能なシステム
- Authors: Hanchen David Wang, Nibraas Khan, Anna Chen, Nilanjan Sarkar, Pamela Wisniewski, Meiyi Ma,
- Abstract要約: MicroXerciseは、マイクロモーション分析とウェアラブルセンサーを統合している。
セラピストや患者に、ビデオ、テキスト、スコアなどの総合的なフィードバックインターフェースを提供する。
- 参考スコア(独自算出の注目度): 2.664550951313621
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent global estimates suggest that as many as 2.41 billion individuals have health conditions that would benefit from rehabilitation services. Home-based Physical Therapy (PT) faces significant challenges in providing interactive feedback and meaningful observation for therapists and patients. To fill this gap, we present MicroXercise, which integrates micro-motion analysis with wearable sensors, providing therapists and patients with a comprehensive feedback interface, including video, text, and scores. Crucially, it employs multi-dimensional Dynamic Time Warping (DTW) and attribution-based explainable methods to analyze the existing deep learning neural networks in monitoring exercises, focusing on a high granularity of exercise. This synergistic approach is pivotal, providing output matching the input size to precisely highlight critical subtleties and movements in PT, thus transforming complex AI analysis into clear, actionable feedback. By highlighting these micro-motions in different metrics, such as stability and range of motion, MicroXercise significantly enhances the understanding and relevance of feedback for end-users. Comparative performance metrics underscore its effectiveness over traditional methods, such as a 39% and 42% improvement in Feature Mutual Information (FMI) and Continuity. MicroXercise is a step ahead in home-based physical therapy, providing a technologically advanced and intuitively helpful solution to enhance patient care and outcomes.
- Abstract(参考訳): 最近の全世界の推計では、24億人の個人がリハビリテーションの恩恵を受ける健康状態を持っている。
在宅理学療法(PT)は、インタラクティブなフィードバックと、セラピストや患者に有意義な観察を提供する上で、大きな課題に直面している。
このギャップを埋めるために、マイクロXerciseは、マイクロモーション分析とウェアラブルセンサーを統合し、セラピストや患者にビデオ、テキスト、スコアなどの総合的なフィードバックインターフェースを提供する。
重要なのは、多次元動的時間ウォーピング(DTW)と属性に基づく説明可能な手法を使用して、既存のディープラーニングニューラルネットワークを分析してエクササイズの粒度が高いことに重点を置いていることだ。
このシナジスティックなアプローチは、PTにおける重要な微妙さと動きを正確に強調するために入力サイズにマッチした出力を提供することで、複雑なAI分析を明確で行動可能なフィードバックに変換する。
これらのマイクロモーションを安定性や動きの範囲など、さまざまな指標で強調することにより、MicroXerciseはエンドユーザに対するフィードバックの理解と関連性を大幅に向上させる。
比較パフォーマンス指標は、FMI(Feature Mutual Information)とContinuityの39%と42%の改善など、従来の手法よりも効果を高く評価している。
MicroXerciseは、技術的に進歩し直感的に役立つソリューションを提供し、患者のケアと成果を高める。
関連論文リスト
- Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
そこで本研究では,音声による音声入力とそれに対応する手術映像からの情報を統合して,フィードバックの有効性を予測する手法を提案する。
以上の結果から,手書きフィードバックと手術映像の両方が,訓練者の行動変化を個別に予測できることがわかった。
本研究は,手術フィードバックの自動評価を推進するためのマルチモーダル学習の可能性を示すものである。
論文 参考訳(メタデータ) (2024-11-17T00:13:00Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
そこで本研究では,大規模言語モデル (LLM) を指導するためのプロンプトエンジニアリングの効果について検討する。
本稿では,プロンプトエンジニアリング手法を適切に利用することにより,プロトタイズされた治療を提供するモデルの能力を向上できることを実証する。
論文 参考訳(メタデータ) (2024-08-27T17:25:16Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
本稿では,低背痛リハビリテーションを施行した臨床患者の医療データセットについて,4つの課題に対処し,提案する。
データセットには、3D Kinectスケルトンの位置と向き、RGBビデオ、2Dスケルトンデータ、正確性を評価するための医用アノテーション、身体部分とタイムパンのエラー分類とローカライゼーションが含まれている。
論文 参考訳(メタデータ) (2024-06-29T19:50:06Z) - Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning [3.972100195623647]
ピッツバーグ大学メディカルセンターから265名の脳卒中患者のデータを収集した。
影響のあるエクササイズを特定するために、我々はChi-square test, Fisher's exact test, and logistic regression for odds ratioを用いた。
術後機能改善に寄与する3つのリハビリテーション運動について検討した。
論文 参考訳(メタデータ) (2024-05-09T04:06:44Z) - MR-STGN: Multi-Residual Spatio Temporal Graph Network Using Attention
Fusion for Patient Action Assessment [0.3626013617212666]
MR-STGN(Multi-Residual Spatio Temporal Graph Network)を用いた患者行動評価の自動化手法を提案する。
MR-STGNは患者行動のダイナミクスを捉えるように設計されている。
リアルタイムの患者行動スコアを正確に予測する上で,UI-PRMDデータセットの性能を示すモデルについて検討した。
論文 参考訳(メタデータ) (2023-12-21T01:09:52Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
パーソナライズされたリハビリテーションのための対話型ソーシャルロボット運動指導システムを開発した。
このシステムは、ニューラルネットワークモデルとルールベースのモデルを統合し、患者のリハビリテーション運動を自動的に監視し、評価する。
我々のシステムは,新たな参加者に適応し,専門家の合意レベルに匹敵する,エクササイズを評価するための平均パフォーマンス0.81を達成できる。
論文 参考訳(メタデータ) (2023-05-12T17:37:04Z) - Mimetic Muscle Rehabilitation Analysis Using Clustering of Low
Dimensional 3D Kinect Data [1.53119329713143]
本報告では, 筋損傷による顔面麻痺患者のリハビリテーションに対する非観血的アプローチについて考察する。
本研究は,HB(House-Brackmann)尺度など,現在の主観的アプローチと比較して,リハビリテーションプロセスの客観的化を目的としている。
この研究は、Kinectステレオビジョンカメラを用いて得られた120の計測値を持つ85人の異なる患者のデータセットを含んでいる。
論文 参考訳(メタデータ) (2023-02-15T09:45:27Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
社会支援ロボットの研究は、神経学的および筋骨格疾患の患者に対する理学療法セッションを増強し、支援する可能性がある。
本稿では,運動の質を予測するために,患者個別の運動の運動特性を動的に選択できる社会支援ロボットのインタラクティブなアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:12:05Z) - Motion Pyramid Networks for Accurate and Efficient Cardiac Motion
Estimation [51.72616167073565]
本研究では,心臓の運動推定を高精度かつ効率的に行うための,ディープラーニングに基づく新しいアプローチであるMotion Pyramid Networksを提案する。
我々は、複数の特徴表現から運動場のピラミッドを予測し、融合し、より洗練された運動場を生成する。
そこで我々は,新しい循環型教員教育戦略を用いて,推論をエンドツーエンドにし,トラッキング性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-06-28T21:03:19Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
本稿では,モーションキャプチャシステムを用いたリハビリテーションプログラムにおける患者のパフォーマンスを評価するための計算手法についてレビューする。
エクササイズ評価のための再検討された計算手法は, 離散的な運動スコア, ルールベース, テンプレートベースアプローチの3つのカテゴリに分類される。
論文 参考訳(メタデータ) (2020-02-29T22:18:56Z) - Opportunities of a Machine Learning-based Decision Support System for
Stroke Rehabilitation Assessment [64.52563354823711]
リハビリテーションアセスメントは、患者の適切な介入を決定するために重要である。
現在の評価の実践は、主にセラピストの経験に依存しており、セラピストの可用性が限られているため、アセスメントは頻繁に実施される。
我々は、強化学習を用いて評価の健全な特徴を識別できるインテリジェントな意思決定支援システムを開発した。
論文 参考訳(メタデータ) (2020-02-27T17:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。