Improving embedding with contrastive fine-tuning on small datasets with expert-augmented scores
- URL: http://arxiv.org/abs/2408.11868v1
- Date: Mon, 19 Aug 2024 01:59:25 GMT
- Title: Improving embedding with contrastive fine-tuning on small datasets with expert-augmented scores
- Authors: Jun Lu, David Li, Bill Ding, Yu Kang,
- Abstract summary: The proposed method uses soft labels derived from expert-augmented scores to fine-tune embedding models.
The paper evaluates the method using a Q&A dataset from an online shopping website and eight expert models.
- Score: 12.86467344792873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach to improve text embedding models through contrastive fine-tuning on small datasets augmented with expert scores. It focuses on enhancing semantic textual similarity tasks and addressing text retrieval problems. The proposed method uses soft labels derived from expert-augmented scores to fine-tune embedding models, preserving their versatility and ensuring retrieval capability is improved. The paper evaluates the method using a Q\&A dataset from an online shopping website and eight expert models. Results show improved performance over a benchmark model across multiple metrics on various retrieval tasks from the massive text embedding benchmark (MTEB). The method is cost-effective and practical for real-world applications, especially when labeled data is scarce.
Related papers
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - Improving Embedding Accuracy for Document Retrieval Using Entity Relationship Maps and Model-Aware Contrastive Sampling [0.0]
APEX-Embedding-7B is a 7-billion parameter decoder-only text Feature Extraction Model.
Our approach employs two training techniques that yield an emergent improvement in factual focus.
Based on our evaluations, our model establishes a new state-of-the-art standard in text feature extraction for longer context document retrieval tasks.
arXiv Detail & Related papers (2024-10-08T17:36:48Z) - Exploring Information Retrieval Landscapes: An Investigation of a Novel Evaluation Techniques and Comparative Document Splitting Methods [0.0]
In this study, the structured nature of textbooks, the conciseness of articles, and the narrative complexity of novels are shown to require distinct retrieval strategies.
A novel evaluation technique is introduced, utilizing an open-source model to generate a comprehensive dataset of question-and-answer pairs.
The evaluation employs weighted scoring metrics, including SequenceMatcher, BLEU, METEOR, and BERT Score, to assess the system's accuracy and relevance.
arXiv Detail & Related papers (2024-09-13T02:08:47Z) - Enhancing Embedding Performance through Large Language Model-based Text Enrichment and Rewriting [0.0]
This paper proposes a novel approach to improve embedding performance by leveraging large language models (LLMs) to enrich and rewrite input text before the embedding process.
The effectiveness of this approach is evaluated on three datasets: Banking77Classification, TwitterSemEval 2015, and Amazon Counter-factual Classification.
arXiv Detail & Related papers (2024-04-18T15:58:56Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
This work presents EditEval: An instruction-based, benchmark and evaluation suite for automatic evaluation of editing capabilities.
We evaluate several pre-trained models, which shows that InstructGPT and PEER perform the best, but that most baselines fall below the supervised SOTA.
Our analysis shows that commonly used metrics for editing tasks do not always correlate well, and that optimization for prompts with the highest performance does not necessarily entail the strongest robustness to different models.
arXiv Detail & Related papers (2022-09-27T12:26:05Z) - Assisted Text Annotation Using Active Learning to Achieve High Quality
with Little Effort [9.379650501033465]
We propose a tool that enables researchers to create large, high-quality, annotated datasets with only a few manual annotations.
We combine an active learning (AL) approach with a pre-trained language model to semi-automatically identify annotation categories.
Our preliminary results show that employing AL strongly reduces the number of annotations for correct classification of even complex and subtle frames.
arXiv Detail & Related papers (2021-12-15T13:14:58Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
We propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks.
We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model.
arXiv Detail & Related papers (2020-10-10T14:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.