Optimizing Multi-Stage Language Models for Effective Text Retrieval
- URL: http://arxiv.org/abs/2412.19265v1
- Date: Thu, 26 Dec 2024 16:05:19 GMT
- Title: Optimizing Multi-Stage Language Models for Effective Text Retrieval
- Authors: Quang Hoang Trung, Le Trung Hoang, Nguyen Van Hoang Phuc,
- Abstract summary: We introduce a novel two-phase text retrieval pipeline optimized for Japanese legal datasets.
Our method leverages advanced language models to achieve state-of-the-art performance.
To further enhance robustness and adaptability, we incorporate an ensemble model that integrates multiple retrieval strategies.
- Score: 0.0
- License:
- Abstract: Efficient text retrieval is critical for applications such as legal document analysis, particularly in specialized contexts like Japanese legal systems. Existing retrieval methods often underperform in such domain-specific scenarios, necessitating tailored approaches. In this paper, we introduce a novel two-phase text retrieval pipeline optimized for Japanese legal datasets. Our method leverages advanced language models to achieve state-of-the-art performance, significantly improving retrieval efficiency and accuracy. To further enhance robustness and adaptability, we incorporate an ensemble model that integrates multiple retrieval strategies, resulting in superior outcomes across diverse tasks. Extensive experiments validate the effectiveness of our approach, demonstrating strong performance on both Japanese legal datasets and widely recognized benchmarks like MS-MARCO. Our work establishes new standards for text retrieval in domain-specific and general contexts, providing a comprehensive solution for addressing complex queries in legal and multilingual environments.
Related papers
- Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval [6.058427379240698]
We introduce a new dataset specifically designed for Japanese legal contexts.
In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization.
In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios.
Our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset.
arXiv Detail & Related papers (2024-12-03T10:52:49Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
Large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning.
Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks.
We present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks.
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Improving embedding with contrastive fine-tuning on small datasets with expert-augmented scores [12.86467344792873]
The proposed method uses soft labels derived from expert-augmented scores to fine-tune embedding models.
The paper evaluates the method using a Q&A dataset from an online shopping website and eight expert models.
arXiv Detail & Related papers (2024-08-19T01:59:25Z) - Generative Retrieval with Preference Optimization for E-commerce Search [16.78829577915103]
We develop an innovative framework for E-commerce search, called generative retrieval with preference optimization.
We employ multi-span identifiers to represent raw item titles and transform the task of generating titles from queries into the task of generating multi-span identifiers from queries.
Our experiments show that this framework achieves competitive performance on a real-world dataset, and online A/B tests demonstrate the superiority and effectiveness in improving conversion gains.
arXiv Detail & Related papers (2024-07-29T09:31:19Z) - ACE: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
We propose a pioneering generAtive Cross-modal rEtrieval framework (ACE) for end-to-end cross-modal retrieval.
ACE achieves state-of-the-art performance in cross-modal retrieval and outperforms the strong baselines on Recall@1 by 15.27% on average.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - Improving Zero-Shot Text Matching for Financial Auditing with Large
Language Models [2.842163527983814]
We present ZeroShotALI, a novel recommender system that leverages a state-of-the-art large language model (LLM) in conjunction with a domain-specifically optimized transformer-based text-matching solution.
We find that a two-step approach of first retrieving a number of best matching document sections per legal requirement with a custom BERT-based model and second filtering these selections using an LLM yields significant performance improvements over existing approaches.
arXiv Detail & Related papers (2023-08-11T12:55:09Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Attentive Deep Neural Networks for Legal Document Retrieval [2.4350217735794337]
We study the use of attentive neural network-based text representation for statute law document retrieval.
We develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer.
Experimental results show that Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages.
arXiv Detail & Related papers (2022-12-13T01:37:27Z) - A Multi-Perspective Architecture for Semantic Code Search [58.73778219645548]
We propose a novel multi-perspective cross-lingual neural framework for code--text matching.
Our experiments on the CoNaLa dataset show that our proposed model yields better performance than previous approaches.
arXiv Detail & Related papers (2020-05-06T04:46:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.