ST-USleepNet: A Spatial-Temporal Coupling Prominence Network for Multi-Channel Sleep Staging
- URL: http://arxiv.org/abs/2408.11884v1
- Date: Wed, 21 Aug 2024 14:57:44 GMT
- Title: ST-USleepNet: A Spatial-Temporal Coupling Prominence Network for Multi-Channel Sleep Staging
- Authors: Jingying Ma, Qika Lin, Ziyu Jia, Mengling Feng,
- Abstract summary: Sleep staging is critical for assessing sleep quality and diagnosing disorders.
Recent advancements in artificial intelligence have driven the development of automated sleep staging models.
We propose a novel framework named ST-USleepNet, comprising a spatial-temporal graph construction module and a U-shaped sleep network.
- Score: 9.83413257745779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep staging is critical for assessing sleep quality and diagnosing disorders. Recent advancements in artificial intelligence have driven the development of automated sleep staging models, which still face two significant challenges. 1) Simultaneously extracting prominent temporal and spatial sleep features from multi-channel raw signals, including characteristic sleep waveforms and salient spatial brain networks. 2) Capturing the spatial-temporal coupling patterns essential for accurate sleep staging. To address these challenges, we propose a novel framework named ST-USleepNet, comprising a spatial-temporal graph construction module (ST) and a U-shaped sleep network (USleepNet). The ST module converts raw signals into a spatial-temporal graph to model spatial-temporal couplings. The USleepNet utilizes a U-shaped structure originally designed for image segmentation. Similar to how image segmentation isolates significant targets, when applied to both raw sleep signals and ST module-generated graph data, USleepNet segments these inputs to extract prominent temporal and spatial sleep features simultaneously. Testing on three datasets demonstrates that ST-USleepNet outperforms existing baselines, and model visualizations confirm its efficacy in extracting prominent sleep features and temporal-spatial coupling patterns across various sleep stages. The code is available at: https://github.com/Majy-Yuji/ST-USleepNet.git.
Related papers
- WaveSleepNet: An Interpretable Network for Expert-like Sleep Staging [4.4697567606459545]
WaveSleepNet is an interpretable neural network for sleep staging.
WaveSleepNet uses latent space representations to identify characteristic wave prototypes corresponding to different sleep stages.
The efficacy of WaveSleepNet is validated across three public datasets.
arXiv Detail & Related papers (2024-04-11T03:47:58Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Quantifying the Impact of Data Characteristics on the Transferability of
Sleep Stage Scoring Models [0.10878040851637998]
Deep learning models for scoring sleep stages based on single-channel EEG have been proposed as a promising method for remote sleep monitoring.
Applying these models to new datasets, particularly from wearable devices, raises two questions.
First, when annotations on a target dataset are unavailable, which different data characteristics affect the sleep stage scoring performance the most and by how much?
We propose a novel method for quantifying the impact of different data characteristics on the transferability of deep learning models.
arXiv Detail & Related papers (2023-03-28T07:57:21Z) - L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging [16.96499618061823]
L-SeqSleepNet is a new deep learning model that takes into account whole-cycle sleep information for sleep staging.
L-SeqSleepNet is able to alleviate the predominance of N2 sleep to bring down errors in other sleep stages.
arXiv Detail & Related papers (2023-01-09T15:44:43Z) - TransSleep: Transitioning-aware Attention-based Deep Neural Network for
Sleep Staging [2.105172041656126]
We propose a novel deep neural network structure, TransSleep, that captures distinctive local temporal patterns.
Results show that TransSleep achieves promising performance in automatic sleep staging.
arXiv Detail & Related papers (2022-03-22T08:55:32Z) - SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep
Staging [10.269152939137854]
We propose SalientSleepNet, a salient wave detection network for sleep staging.
It is composed of two independent $rm U2$-like streams to extract salient features from multimodal data.
Experiments on the two datasets demonstrate that SalientSleepNet outperforms the state-of-the-art baselines.
arXiv Detail & Related papers (2021-05-24T16:32:09Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Temporal Pyramid Network for Action Recognition [129.12076009042622]
We propose a generic Temporal Pyramid Network (TPN) at the feature-level, which can be flexibly integrated into 2D or 3D backbone networks.
TPN shows consistent improvements over other challenging baselines on several action recognition datasets.
arXiv Detail & Related papers (2020-04-07T17:17:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.