Capturing anharmonic effects in single vibronic level fluorescence spectra using local harmonic Hagedorn wavepacket dynamics
- URL: http://arxiv.org/abs/2408.11991v1
- Date: Wed, 21 Aug 2024 21:01:59 GMT
- Title: Capturing anharmonic effects in single vibronic level fluorescence spectra using local harmonic Hagedorn wavepacket dynamics
- Authors: Zhan Tong Zhang, Máté Visegrádi, Jiří J. L. Vaníček,
- Abstract summary: We combine the Hagedorn approach to spectroscopy with the local harmonic approximation of the potential.
We show that the local harmonic approach yields more accurate results than global harmonic approximations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hagedorn wavepacket dynamics yields exact single vibronic level (SVL) fluorescence spectra from any initial vibrational level in displaced, squeezed, and Duschinsky-rotated global harmonic models. Real molecules, however, have anharmonic potential energy surfaces. To partially describe effects of anharmonicity on the spectra, we combine the Hagedorn approach to spectroscopy with the local harmonic approximation of the potential. We compute the SVL spectra for several anharmonic Morse-type potentials in one, two, and twenty dimensions and compare them to the results of global harmonic approximations and, where possible, of exact quantum calculations. We show that the local harmonic approach yields more accurate results than global harmonic approximations, especially for the emission spectra from higher initial vibrational levels.
Related papers
- On-the-Fly Ab Initio Hagedorn Wavepacket Dynamics: Single Vibronic Level Fluorescence Spectra of Difluorocarbene [0.0]
Hagedorn wavepackets have been used with local harmonic approximation to partially capture the anharmonic effects on single vibronic level (SVL) spectra in model potentials.
We combine local harmonic Hagedorn wavepacket dynamics with on-the-fly ab initio dynamics.
We show that, whereas global harmonic models are inadequate for CF$, spectra computed with the on-the-fly local harmonic Hagedorn wavepacket dynamics agree well with experimental data, especially for low initial excitations.
arXiv Detail & Related papers (2024-09-03T13:04:44Z) - Ab initio simulation of single vibronic level fluorescence spectra of anthracene using Hagedorn wavepackets [0.0]
Single vibronic level (SVL) fluorescence spectroscopy contributes to the understanding of molecular vibrational structures and relaxation processes.
Here, we present a practical method for computing SVL fluorescence spectra of polyatomic molecules from arbitrary initial vibrational levels.
arXiv Detail & Related papers (2024-03-01T17:39:42Z) - Single vibronic level fluorescence spectra from Hagedorn wavepacket dynamics [0.0]
We develop an efficient algorithm to compute the overlaps between two Hagedorn wavepackets.
We study the effects of displacement, distortion (squeezing), and Duschinsky rotation on SVL spectra.
arXiv Detail & Related papers (2024-03-01T14:58:07Z) - Vibrational strong coupling in liquid water from cavity molecular
dynamics [0.0]
We show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model.
We conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum.
arXiv Detail & Related papers (2023-05-04T10:33:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum-enhanced absorption spectroscopy with bright squeezed frequency
combs [91.3755431537592]
We propose a strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state.
A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies.
We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor.
arXiv Detail & Related papers (2022-09-30T17:57:05Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Applicability of the thawed Gaussian wavepacket dynamics to the
calculation of vibronic spectra of molecules with double-well potential
energy surfaces [0.0]
We show that a semiclassical wavepacket approach is more robust and to provide more accurate spectra than the conventional harmonic approximation.
The method is efficient and requires only a single classical ab initio molecular dynamics trajectory.
arXiv Detail & Related papers (2022-01-14T20:30:41Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.