On-the-Fly Ab Initio Hagedorn Wavepacket Dynamics: Single Vibronic Level Fluorescence Spectra of Difluorocarbene
- URL: http://arxiv.org/abs/2409.01862v1
- Date: Tue, 3 Sep 2024 13:04:44 GMT
- Title: On-the-Fly Ab Initio Hagedorn Wavepacket Dynamics: Single Vibronic Level Fluorescence Spectra of Difluorocarbene
- Authors: Zhan Tong Zhang, Máté Visegrádi, Jiří J. L. Vaníček,
- Abstract summary: Hagedorn wavepackets have been used with local harmonic approximation to partially capture the anharmonic effects on single vibronic level (SVL) spectra in model potentials.
We combine local harmonic Hagedorn wavepacket dynamics with on-the-fly ab initio dynamics.
We show that, whereas global harmonic models are inadequate for CF$, spectra computed with the on-the-fly local harmonic Hagedorn wavepacket dynamics agree well with experimental data, especially for low initial excitations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hagedorn wavepackets have been used with local harmonic approximation to partially capture the anharmonic effects on single vibronic level (SVL) spectra in model potentials. To make the Hagedorn approach practical for realistic anharmonic polyatomic molecules, here we combine local harmonic Hagedorn wavepacket dynamics with on-the-fly ab initio dynamics. We then test this method by computing the SVL fluorescence spectra of difluorocarbene, a small, floppy molecule with a very anharmonic potential energy surface. Our time-dependent approach obtains the emission spectra of all initial vibrational levels from a single anharmonic semiclassical wavepacket trajectory without the need to fit individual anharmonic vibrational wavefunctions and to calculate the Franck--Condon factors for all vibronic transitions. We show that, whereas global harmonic models are inadequate for CF$_2$, the spectra computed with the on-the-fly local harmonic Hagedorn wavepacket dynamics agree well with experimental data, especially for low initial excitations.
Related papers
- Capturing anharmonic effects in single vibronic level fluorescence spectra using local harmonic Hagedorn wavepacket dynamics [0.0]
We combine the Hagedorn approach to spectroscopy with the local harmonic approximation of the potential.
We show that the local harmonic approach yields more accurate results than global harmonic approximations.
arXiv Detail & Related papers (2024-08-21T21:01:59Z) - Ab initio simulation of single vibronic level fluorescence spectra of anthracene using Hagedorn wavepackets [0.0]
Single vibronic level (SVL) fluorescence spectroscopy contributes to the understanding of molecular vibrational structures and relaxation processes.
Here, we present a practical method for computing SVL fluorescence spectra of polyatomic molecules from arbitrary initial vibrational levels.
arXiv Detail & Related papers (2024-03-01T17:39:42Z) - Single vibronic level fluorescence spectra from Hagedorn wavepacket dynamics [0.0]
We develop an efficient algorithm to compute the overlaps between two Hagedorn wavepackets.
We study the effects of displacement, distortion (squeezing), and Duschinsky rotation on SVL spectra.
arXiv Detail & Related papers (2024-03-01T14:58:07Z) - Ab-Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule
Systems [0.0]
We present an ab-initio methodology, based on the cavity Born-Oppenheimer Hartree-Fock ansatz, to calculate vibro-polaritonic IR spectra.
Our semi-classical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra.
arXiv Detail & Related papers (2023-10-03T08:16:21Z) - Vibrational strong coupling in liquid water from cavity molecular
dynamics [0.0]
We show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model.
We conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum.
arXiv Detail & Related papers (2023-05-04T10:33:14Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.