論文の概要: Aligning (Medical) LLMs for (Counterfactual) Fairness
- arxiv url: http://arxiv.org/abs/2408.12055v1
- Date: Thu, 22 Aug 2024 01:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 15:33:26.041786
- Title: Aligning (Medical) LLMs for (Counterfactual) Fairness
- Title(参考訳): 商品フェアネスのための(医療)LCMの調整
- Authors: Raphael Poulain, Hamed Fayyaz, Rahmatollah Beheshti,
- Abstract要約: 大規模言語モデル(LLM)は、医療および臨床決定支援アプリケーションのための有望なソリューションとして登場した。
LLMは様々な種類のバイアスを受けており、個人の不公平な扱い、健康格差の悪化、AIが強化された医療ツールへの信頼の低下につながる可能性がある。
本稿では, 知識蒸留フレームワークにおける優先最適化手法を用いて, LLMの整列化のための新しいモデルアライメント手法を提案する。
- 参考スコア(独自算出の注目度): 2.089191490381739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have emerged as promising solutions for a variety of medical and clinical decision support applications. However, LLMs are often subject to different types of biases, which can lead to unfair treatment of individuals, worsening health disparities, and reducing trust in AI-augmented medical tools. Aiming to address this important issue, in this study, we present a new model alignment approach for aligning LLMs using a preference optimization method within a knowledge distillation framework. Prior to presenting our proposed method, we first use an evaluation framework to conduct a comprehensive (largest to our knowledge) empirical evaluation to reveal the type and nature of existing biases in LLMs used for medical applications. We then offer a bias mitigation technique to reduce the unfair patterns in LLM outputs across different subgroups identified by the protected attributes. We show that our mitigation method is effective in significantly reducing observed biased patterns. Our code is publicly available at \url{https://github.com/healthylaife/FairAlignmentLLM}.
- Abstract(参考訳): 大規模言語モデル (LLMs) は、様々な医学的・臨床的意思決定支援アプリケーションのための有望な解決策として登場した。
しかし、LSMは様々な種類のバイアスを受けており、個人の不公平な治療、健康格差の悪化、AIが強化された医療ツールへの信頼の低下につながる可能性がある。
本研究は, この課題に対処するために, 知識蒸留フレームワーク内での選好最適化手法を用いてLLMを整列するモデルアライメント手法を提案する。
提案手法を提示する前に,我々はまず,医学的応用に使用されるLCMの既存バイアスの種類と性質を明らかにするために,総合的な(我々の知識に最も大きな)経験的評価を行うための評価枠組みを用いた。
次に、保護属性によって識別される異なるサブグループ間でのLCM出力の不公平なパターンを低減するバイアス緩和手法を提案する。
本手法は,観察された偏りパターンの低減に有効であることを示す。
私たちのコードは、 \url{https://github.com/healthylaife/FairAlignmentLLM}で公開されています。
関連論文リスト
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - How Can We Diagnose and Treat Bias in Large Language Models for Clinical Decision-Making? [2.7476176772825904]
本研究では,大規模言語モデル(LLM)におけるバイアスの評価と緩和について検討する。
本稿では,JAMAクリニカルチャレンジから得られた新しいCPVデータセットについて紹介する。
このデータセットを用いて、複数の選択質問(MCQ)とそれに対応する説明を併用し、バイアス評価のためのフレームワークを構築した。
論文 参考訳(メタデータ) (2024-10-21T23:14:10Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - Enabling Scalable Evaluation of Bias Patterns in Medical LLMs [2.089191490381739]
大規模言語モデル(LLMs)は、多くの医学的課題に大きく貢献する可能性を示している。
主な関心領域の1つは、医学的応用におけるLSMの偏りのある行動に関連しており、個人の不公平な治療につながっている。
本稿では,厳密な医学的証拠に基づく検査ケースの自動生成により,そのようなバイアス評価をスケールアップする手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T14:17:03Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
好みラベルからの学習は、微調整された大きな言語モデルにおいて重要な役割を果たす。
好みの微調整には、教師付き学習、オンライン強化学習(RL)、コントラスト学習など、いくつかの異なるアプローチがある。
論文 参考訳(メタデータ) (2024-04-22T17:20:18Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Improving Fairness in AI Models on Electronic Health Records: The Case
for Federated Learning Methods [0.0]
我々は、医療機関が連合学習パラダイムを通じて協力することで、バイアスの懸念を軽減する1つの可能なアプローチを示す。
本稿では,様々な公正度尺度に適合する,対向的偏りを伴う包括的FL手法とフェアアグリゲーション手法を提案する。
本手法は, 判定性能(精度)に最低限の影響を伴って, 有望な公平性を達成している。
論文 参考訳(メタデータ) (2023-05-19T02:03:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。