論文の概要: Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge
- arxiv url: http://arxiv.org/abs/2410.02736v2
- Date: Fri, 4 Oct 2024 03:57:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:13:18.725687
- Title: Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge
- Title(参考訳): 正義か偏見か? LLM-as-a-Judgeにおけるバイアスの定量化
- Authors: Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, Xiangliang Zhang,
- Abstract要約: 多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
- 参考スコア(独自算出の注目度): 84.34545223897578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-as-a-Judge has been widely utilized as an evaluation method in various benchmarks and served as supervised rewards in model training. However, despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility. Therefore, we identify 12 key potential biases and propose a new automated bias quantification framework-CALM-which systematically quantifies and analyzes each type of bias in LLM-as-a-Judge by using automated and principle-guided modification. Our experiments cover multiple popular language models, and the results indicate that while advanced models have achieved commendable overall performance, significant biases persist in certain specific tasks. Empirical results suggest that there remains room for improvement in the reliability of LLM-as-a-Judge. Moreover, we also discuss the explicit and implicit influence of these biases and give some suggestions for the reliable application of LLM-as-a-Judge. Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
- Abstract(参考訳): LLM-as-a-Judgeは様々なベンチマークで評価手法として広く利用されており、モデルトレーニングにおける教師付き報酬として機能している。
しかし、多くのドメインで優れているにもかかわらず、潜在的な問題は未調査であり、その信頼性と実用性の範囲を損なう。
そこで本研究では,LLM-as-a-Judgeにおける各種類のバイアスを,自動的および原則的修正を用いて体系的に定量化し解析する,新しい自動バイアス量化フレームワークであるCALMを提案する。
実験では,複数の人気言語モデルについて検討し,高度なモデルが総合的な性能を達成する一方で,特定のタスクにおいて重要なバイアスが持続することを示した。
実験結果から, LLM-as-a-Judgeの信頼性は改善の余地があることが示唆された。
さらに,これらのバイアスの明示的および暗黙的な影響についても論じ,LLM-as-a-Judgeの信頼性向上を示唆する。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
関連論文リスト
- A Survey on LLM-as-a-Judge [10.257160590560824]
大規模言語モデル(LLM)は、様々な領域で大きな成功を収めています。
LLMは、従来の専門家主導の評価に代わる魅力的な代替手段である。
LLM-as-a-Judgeシステムはどうやって構築できるのか?
論文 参考訳(メタデータ) (2024-11-23T16:03:35Z) - Self-Preference Bias in LLM-as-a-Judge [13.880151307013321]
大規模言語モデル(LLM)における自己参照バイアスを測定するための新しい指標を提案する。
以上の結果から, GPT-4は自己選好バイアスがかなり高いことが示唆された。
このことは、偏見の本質は難易度にあることを示唆し、自己選好バイアスは LLM がより親しみやすいテキストを好むため存在することを示唆している。
論文 参考訳(メタデータ) (2024-10-29T07:42:18Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。