MAC protocol classification in the ISM band using machine learning methods
- URL: http://arxiv.org/abs/2408.12059v1
- Date: Thu, 22 Aug 2024 01:26:28 GMT
- Title: MAC protocol classification in the ISM band using machine learning methods
- Authors: Hanieh Rashidpour, Hossein Bahramgiri,
- Abstract summary: We classify the Wi-Fi and Bluetooth protocols, which are the most widely used MAC sublayer protocols in the ISM radio band.
We use Support Vector Machine and K-Nearest Neighbors algorithms, which are machine learning algorithms, to classify protocols into three classes: Wi-Fi, Wi-Fi Beacon, and Bluetooth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the emergence of new technologies and a growing number of wireless networks, we face the problem of radio spectrum shortages. As a result, identifying the wireless channel spectrum to exploit the channel's idle state while also boosting network security is a pivotal issue. Detecting and classifying protocols in the MAC sublayer enables Cognitive Radio users to improve spectrum utilization and minimize potential interference. In this paper, we classify the Wi-Fi and Bluetooth protocols, which are the most widely used MAC sublayer protocols in the ISM radio band. With the advent of various wireless technologies, especially in the 2.4 GHz frequency band, the ISM frequency spectrum has become crowded and high-traffic, which faces a lack of spectrum resources and user interference. Therefore, identifying and classifying protocols is an effective and useful method. Leveraging machine learning and deep learning techniques, known for their advanced classification capabilities, we apply Support Vector Machine and K-Nearest Neighbors algorithms, which are machine learning algorithms, to classify protocols into three classes: Wi-Fi, Wi-Fi Beacon, and Bluetooth. To capture the signals, we use the USRP N210 Software Defined Radio device and sample the real data in the indoor environment in different conditions of the presence and absence of transmitters and receivers for these two protocols. By assembling this dataset and studying the time and frequency features of the protocols, we extract the frame width and the silence gap between the two frames as time features and the PAPR of each frame as a power feature. By comparing the output of the protocols classification in different conditions and also adding Gaussian noise, it was found that the samples in the nonlinear SVM method with RBF and KNN functions have the best performance, with 97.83% and 98.12% classification accuracy, respectively.
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Realtime Spectrum Monitoring via Reinforcement Learning -- A Comparison
Between Q-Learning and Heuristic Methods [0.0]
Two approaches for controlling available receiver resources are compared.
The Q-learning algorithm used has a significantly higher detection rate than the approach at the expense of a smaller exploration rate.
arXiv Detail & Related papers (2023-07-11T19:40:02Z) - Faster Region-Based CNN Spectrum Sensing and Signal Identification in
Cluttered RF Environments [0.7734726150561088]
We optimize a faster region-based convolutional neural network (FRCNN) for 1-dimensional (1D) signal processing and electromagnetic spectrum sensing.
Results show that our method has better localization performance, and is faster than the 2D equivalent.
arXiv Detail & Related papers (2023-02-20T09:35:13Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - A Photonic-Circuits-Inspired Compact Network: Toward Real-Time Wireless
Signal Classification at the Edge [3.841495731646297]
Large size of machine learning models can make them difficult to implement on edge devices for latency-sensitive downstream tasks.
In wireless communication systems, ML data processing at a sub-millisecond scale will enable real-time network monitoring.
We propose a novel compact deep network that consists of a photonic-hardware-inspired recurrent neural network model.
arXiv Detail & Related papers (2021-06-25T19:55:41Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
arXiv Detail & Related papers (2020-11-16T21:41:31Z) - Wireless for Machine Learning [91.13476340719087]
We give an exhaustive review of the state-of-the-art wireless methods that are specifically designed to support machine learning services over distributed datasets.
There are two clear themes within the literature, analog over-the-air computation and digital radio resource management optimized for ML.
This survey gives a comprehensive introduction to these methods, reviews the most important works, highlights open problems, and discusses application scenarios.
arXiv Detail & Related papers (2020-08-31T11:09:49Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
We introduce a novel neural-network based machine learning algorithm that uses time series strain data from gravitational-wave detectors.
We find an improvement by a factor of 6 in sensitivity to signals with signal-to-noise ratio below 25.
A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency between signal arrival and generating an alert.
arXiv Detail & Related papers (2020-06-02T10:20:11Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.