Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder
- URL: http://arxiv.org/abs/2011.08295v1
- Date: Mon, 16 Nov 2020 21:41:31 GMT
- Title: Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder
- Authors: Ziqi Ke and Haris Vikalo
- Abstract summary: We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
- Score: 29.590446724625693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Identification of the type of communication technology and/or modulation
scheme based on detected radio signal are challenging problems encountered in a
variety of applications including spectrum allocation and radio interference
mitigation. They are rendered difficult due to a growing number of emitter
types and varied effects of real-world channels upon the radio signal. Existing
spectrum monitoring techniques are capable of acquiring massive amounts of
radio and real-time spectrum data using compact sensors deployed in a variety
of settings. However, state-of-the-art methods that use such data to classify
emitter types and detect communication schemes struggle to achieve required
levels of accuracy at a computational efficiency that would allow their
implementation on low-cost computational platforms. In this paper, we present a
learning framework based on an LSTM denoising auto-encoder designed to
automatically extract stable and robust features from noisy radio signals, and
infer modulation or technology type using the learned features. The algorithm
utilizes a compact neural network architecture readily implemented on a
low-cost computational platform while exceeding state-of-the-art accuracy.
Results on realistic synthetic as well as over-the-air radio data demonstrate
that the proposed framework reliably and efficiently classifies received radio
signals, often demonstrating superior performance compared to state-of-the-art
methods.
Related papers
- Augmenting Training Data with Vector-Quantized Variational Autoencoder for Classifying RF Signals [9.99212997328053]
This paper proposes the use of a Vector-Quantized Variational Autoencoder (VQ-VAE) to augment training data.
The VQ-VAE model generates high-fidelity synthetic RF signals, increasing the diversity and fidelity of the training dataset.
Our experimental results show that incorporating VQ-VAE-generated data significantly improves the classification accuracy of the baseline model.
arXiv Detail & Related papers (2024-10-23T21:17:45Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Deep-Learned Compression for Radio-Frequency Signal Classification [0.49109372384514843]
Next-generation cellular concepts rely on the processing of large quantities of radio-frequency (RF) samples.
We propose a deep learned compression model, HQARF, to compress the complex-valued samples of RF signals.
We are assessing the effects of HQARF on the performance of an AI model trained to infer the modulation class of the RF signal.
arXiv Detail & Related papers (2024-03-05T17:42:39Z) - Modulation Classification Through Deep Learning Using Resolution
Transformed Spectrograms [3.9511559419116224]
We propose a scheme for Automatic Modulation Classification (AMC) using modern architectures of Convolutional Neural Networks (CNN)
We perform resolution transformation of spectrograms that results up to 99.61% of computational load reduction and 8x faster conversion from the received I/Q data.
The performance is evaluated on existing CNN models including SqueezeNet, Resnet-50, InceptionResnet-V2, Inception-V3, VGG-16 and Densenet-201.
arXiv Detail & Related papers (2023-06-06T16:14:15Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Rethinking the Tradeoff in Integrated Sensing and Communication:
Recognition Accuracy versus Communication Rate [21.149708253108788]
Integrated sensing and communication (ISAC) is a promising technology to improve the band-utilization efficiency.
There exists a tradeoff between the sensing and communication performance.
This paper formulates and solves a multi-objective optimization problem which simultaneously maximizes the recognition accuracy and the communication data rate.
arXiv Detail & Related papers (2021-07-20T17:00:35Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.