Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
- URL: http://arxiv.org/abs/2410.17971v1
- Date: Wed, 23 Oct 2024 15:36:43 GMT
- Title: Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
- Authors: Nguyen Van Huynh, Bolun Zhang, Dinh-Hieu Tran, Dinh Thai Hoang, Diep N. Nguyen, Gan Zheng, Dusit Niyato, Quoc-Viet Pham,
- Abstract summary: The wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications.
This paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals.
We develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters.
- Score: 68.63990729719369
- License:
- Abstract: Spectrum access is an essential problem in device-to-device (D2D) communications. However, with the recent growth in the number of mobile devices, the wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications. To address this problem, this paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals to transmit their data when the shared spectrum is occupied by mobile users. To obtain the optimal spectrum access policy, i.e., stay idle or access the shared spectrum and perform active transmissions or backscattering ambient RF signals for transmissions, to maximize the average throughput for D2D users, deep reinforcement learning (DRL) can be adopted. However, DRL-based solutions may require long training time due to the curse of dimensionality issue as well as complex deep neural network architectures. For that, we develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters compared to DRL thanks to the quantum superposition and quantum entanglement principles. Specifically, instead of using conventional deep neural networks, the proposed quantum RL algorithm uses a parametrized quantum circuit to approximate an optimal policy. Extensive simulations then demonstrate that the proposed solution not only can significantly improve the average throughput of D2D devices when the shared spectrum is busy but also can achieve much better performance in terms of convergence rate and learning complexity compared to existing DRL-based methods.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Deep Learning for Low-Latency, Quantum-Ready RF Sensing [2.5393702482222813]
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals.
In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification.
arXiv Detail & Related papers (2024-04-27T17:22:12Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Deep Reinforcement Learning for Intelligent Reflecting Surface-assisted
D2D Communications [33.9975494305404]
We propose a deep reinforcement learning (DRL) approach for solving the optimisation problem of the network's sum-rate in device-to-device (D2D) communications supported by an intelligent reflecting surface (IRS)
IRS is deployed to mitigate interference and enhance the signal between the D2D transmitter and the associated D2D receiver.
We formulate a Markov decision process and then propose the proximal policy optimisation for solving the maximisation game.
arXiv Detail & Related papers (2021-08-06T00:02:37Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
Wireless communication in the TeraHertz band (0.1--10 THz) is envisioned as one of the key enabling technologies for the future sixth generation (6G) wireless communication systems.
We propose a novel hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at THz-band frequencies.
arXiv Detail & Related papers (2021-01-22T14:56:28Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.