Enhancing Sampling Protocol for Robust Point Cloud Classification
- URL: http://arxiv.org/abs/2408.12062v1
- Date: Thu, 22 Aug 2024 01:48:31 GMT
- Title: Enhancing Sampling Protocol for Robust Point Cloud Classification
- Authors: Chongshou Li, Pin Tang, Xinke Li, Tianrui Li,
- Abstract summary: Real-world data often suffer from corrputions such as sensor noise, which violates the benignness assumption of point cloud in current protocols.
We propose an enhanced point cloud sampling protocol, PointDR, which comprises two components: 1) Downsampling for key point identification and 2) Resampling for flexible sample size.
- Score: 7.6224558218559855
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been recognized and utilized. However, real-world data often suffer from corrputions such as sensor noise, which violates the benignness assumption of point cloud in current protocols. Consequently, they are notably vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointDR, which comprises two components: 1) Downsampling for key point identification and 2) Resampling for flexible sample size. Furthermore, differentiated strategies are implemented for training and inference processes. Particularly, an isolation-rated weight considering local density is designed for the downsampling method, assisting it in performing random key points selection in the training phase and bypassing noise in the inference phase. A local-geometry-preserved upsampling is incorporated into resampling, facilitating it to maintain a stochastic sample size in the training stage and complete insufficient data in the inference. It is crucial to note that the proposed protocol is free of model architecture altering and extra learning, thus minimal efforts are demanded for its replacement of the existing one. Despite the simplicity, it substantially improves the robustness of point cloud learning, showcased by outperforming the state-of-the-art methods on multiple benchmarks of corrupted point cloud classification. The code will be available upon the paper's acceptance.
Related papers
- Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
We propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates.
Our method first interpolates the low-res point cloud according to a given upsampling rate.
arXiv Detail & Related papers (2023-04-24T06:36:35Z) - AU-PD: An Arbitrary-size and Uniform Downsampling Framework for Point
Clouds [6.786701761788659]
We introduce the AU-PD, a novel task-aware sampling framework that directly downsamples point cloud to any smaller size.
We refine the pre-sampled set to make it task-aware, driven by downstream task losses.
With the attention mechanism and proper training scheme, the framework learns to adaptively refine the pre-sampled set of different sizes.
arXiv Detail & Related papers (2022-11-02T13:37:16Z) - PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene [15.516687293651795]
We propose a new Polar Cylinder Balanced Random Sampling method for semantic segmentation of large-scale LiDAR point clouds.
In addition, a sampling consistency loss is introduced to further improve the segmentation performance and reduce the model's variance under different sampling methods.
Our approach produces excellent performance on both SemanticKITTI and SemanticPOSS benchmarks, achieving a 2.8% and 4.0% improvement, respectively.
arXiv Detail & Related papers (2022-09-28T02:59:36Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - PC2-PU: Patch Correlation and Position Correction for Effective Point
Cloud Upsampling [12.070762117164092]
Point cloud upsampling is to densify a sparse point set acquired from 3D sensors.
Existing methods perform upsampling on a single patch, ignoring the coherence and relation of the entire surface.
We present a novel method for more effective point cloud upsampling, achieving a more robust and improved performance.
arXiv Detail & Related papers (2021-09-20T07:40:20Z) - PointLIE: Locally Invertible Embedding for Point Cloud Sampling and
Recovery [35.353458457283544]
Point Cloud Sampling and Recovery (PCSR) is critical for massive real-time point cloud collection and processing.
We propose a novel Locally Invertible Embedding for point cloud adaptive sampling and recovery (PointLIE)
PointLIE unifies point cloud sampling and upsampling to one single framework through bi-directional learning.
arXiv Detail & Related papers (2021-04-30T05:55:59Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.