Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions
- URL: http://arxiv.org/abs/2408.12062v2
- Date: Mon, 03 Feb 2025 08:43:20 GMT
- Title: Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions
- Authors: Chongshou Li, Pin Tang, Xinke Li, Yuheng Liu, Tianrui Li,
- Abstract summary: We propose an enhanced point cloud sampling protocol, PointSP, to improve robustness against point cloud corruptions.
PointSP incorporates key point reweighting to mitigate outlier sensitivity and ensure the selection of representative points.
It also introduces a local-global balanced downsampling strategy, which allows for scalable and adaptive sampling.
- Score: 7.734037486455235
- License:
- Abstract: Established sampling protocols for 3D point cloud learning, such as Farthest Point Sampling (FPS) and Fixed Sample Size (FSS), have long been relied upon. However, real-world data often suffer from corruptions, such as sensor noise, which violates the benign data assumption in current protocols. As a result, these protocols are highly vulnerable to noise, posing significant safety risks in critical applications like autonomous driving. To address these issues, we propose an enhanced point cloud sampling protocol, PointSP, designed to improve robustness against point cloud corruptions. PointSP incorporates key point reweighting to mitigate outlier sensitivity and ensure the selection of representative points. It also introduces a local-global balanced downsampling strategy, which allows for scalable and adaptive sampling while maintaining geometric consistency. Additionally, a lightweight tangent plane interpolation method is used to preserve local geometry while enhancing the density of the point cloud. Unlike learning-based approaches that require additional model training, PointSP is architecture-agnostic, requiring no extra learning or modification to the network. This enables seamless integration into existing pipelines. Extensive experiments on synthetic and real-world corrupted datasets show that PointSP significantly improves the robustness and accuracy of point cloud classification, outperforming state-of-the-art methods across multiple benchmarks.
Related papers
- PointCFormer: a Relation-based Progressive Feature Extraction Network for Point Cloud Completion [19.503392612245474]
Point cloud completion aims to reconstruct the complete 3D shape from incomplete point clouds.
We introduce PointCFormer, a transformer framework optimized for robust global retention and precise local detail capture.
PointCFormer demonstrates state-of-the-art performance on several widely used benchmarks.
arXiv Detail & Related papers (2024-12-11T14:37:21Z) - Curvature Informed Furthest Point Sampling [0.0]
We introduce a reinforcement learning-based sampling algorithm that enhances furthest point sampling (FPS)
Our approach ranks points by combining FPS-derived soft ranks with curvature scores computed by a deep neural network.
We provide comprehensive ablation studies, with both qualitative and quantitative insights into the effect of each feature on performance.
arXiv Detail & Related papers (2024-11-25T23:58:38Z) - PLATYPUS: Progressive Local Surface Estimator for Arbitrary-Scale Point Cloud Upsampling [7.967279361937874]
3D point clouds are increasingly vital for applications like autonomous driving and robotics.
Point cloud upsampling is essential for improving density and uniformity.
We introduce the Progressive Local Surface Estimator (PLSE), which more effectively captures local features in complex regions.
arXiv Detail & Related papers (2024-11-01T07:56:56Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - PIVOT-Net: Heterogeneous Point-Voxel-Tree-based Framework for Point
Cloud Compression [8.778300313732027]
We propose a heterogeneous point cloud compression (PCC) framework.
We unify typical point cloud representations -- point-based, voxel-based, and tree-based representations -- and their associated backbones.
We augment the framework with a proposed context-aware upsampling for decoding and an enhanced voxel transformer for feature aggregation.
arXiv Detail & Related papers (2024-02-11T16:57:08Z) - Learning Continuous Implicit Field with Local Distance Indicator for
Arbitrary-Scale Point Cloud Upsampling [55.05706827963042]
Point cloud upsampling aims to generate dense and uniformly distributed point sets from a sparse point cloud.
Previous methods typically split a sparse point cloud into several local patches, upsample patch points, and merge all upsampled patches.
We propose a novel approach that learns an unsigned distance field guided by local priors for point cloud upsampling.
arXiv Detail & Related papers (2023-12-23T01:52:14Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - PointLIE: Locally Invertible Embedding for Point Cloud Sampling and
Recovery [35.353458457283544]
Point Cloud Sampling and Recovery (PCSR) is critical for massive real-time point cloud collection and processing.
We propose a novel Locally Invertible Embedding for point cloud adaptive sampling and recovery (PointLIE)
PointLIE unifies point cloud sampling and upsampling to one single framework through bi-directional learning.
arXiv Detail & Related papers (2021-04-30T05:55:59Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - RPM-Net: Robust Point Matching using Learned Features [79.52112840465558]
RPM-Net is a less sensitive and more robust deep learning-based approach for rigid point cloud registration.
Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility.
arXiv Detail & Related papers (2020-03-30T13:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.