Distributed Noncoherent Joint Transmission Based on Multi-Agent Reinforcement Learning for Dense Small Cell MISO Systems
- URL: http://arxiv.org/abs/2408.12067v2
- Date: Wed, 11 Sep 2024 04:06:45 GMT
- Title: Distributed Noncoherent Joint Transmission Based on Multi-Agent Reinforcement Learning for Dense Small Cell MISO Systems
- Authors: Shaozhuang Bai, Zhenzhen Gao, Xuewen Liao,
- Abstract summary: We consider a dense small cell (DSC) network where multi-antenna small cell base stations (SBSs) transmit data over a shared band.
- Score: 8.146481327854545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a dense small cell (DSC) network where multi-antenna small cell base stations (SBSs) transmit data to single-antenna users over a shared frequency band. To enhance capacity, a state-of-the-art technique known as noncoherent joint transmission (JT) is applied, enabling users to receive data from multiple coordinated SBSs. However, the sum rate maximization problem with noncoherent JT is inherently nonconvex and NP-hard. While existing optimization-based noncoherent JT algorithms can provide near-optimal performance, they require global channel state information (CSI) and multiple iterations, which makes them difficult to be implemeted in DSC networks.To overcome these challenges, we first prove that the optimal beamforming structure is the same for both the power minimization problem and the sum rate maximization problem, and then mathematically derive the optimal beamforming structure for both problems by solving the power minimization problem.The optimal beamforming structure can effectively reduces the variable dimensions.By exploiting the optimal beamforming structure, we propose a deep deterministic policy gradient-based distributed noncoherent JT scheme to maximize the system sum rate.In the proposed scheme, each SBS utilizes global information for training and uses local CSI to determine beamforming vectors. Simulation results demonstrate that the proposed scheme achieves comparable performance with considerably lower computational complexity and information overhead compared to centralized iterative optimization-based techniques, making it more attractive for practical deployment.
Related papers
- Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Communication-Efficient Federated Hypergradient Computation via
Aggregated Iterative Differentiation [14.494626833445915]
AggITD is simple to implement and significantly reduces the communication cost.
We show that the proposed AggITD-based algorithm achieves the same sample complexity as existing approximate implicit differentiation (AID)-based approaches.
arXiv Detail & Related papers (2023-02-09T23:07:34Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Novel General Active Reliability Redundancy Allocation Problems and
Algorithm [1.5990720051907859]
The reliability redundancy allocation problem (RRAP) is used to maximize system reliability.
A novel RRAP, called the general RRAP (GRRAP), is proposed to extend the series-parallel structure or bridge network to a more general network structure.
To solve the proposed novel GRRAP, a new algorithm, called the BAT-SSOA3, used the simplified swarm optimization (SSO) to update solutions.
arXiv Detail & Related papers (2021-08-18T11:54:42Z) - Learning Robust Beamforming for MISO Downlink Systems [14.429561340880074]
A base station identifies efficient multi-antenna transmission strategies only with imperfect channel state information (CSI) and its features.
We propose a robust training algorithm where a deep neural network (DNN) is optimized to fit to real-world propagation environment.
arXiv Detail & Related papers (2021-03-02T09:56:35Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
It is well-known problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks.
We propose a novel deep learning based paper algorithm to address this problem.
arXiv Detail & Related papers (2020-11-08T12:48:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.