Learning Robust Beamforming for MISO Downlink Systems
- URL: http://arxiv.org/abs/2103.01602v1
- Date: Tue, 2 Mar 2021 09:56:35 GMT
- Title: Learning Robust Beamforming for MISO Downlink Systems
- Authors: Junbeom Kim, Hoon Lee, Seok-Hwan Park
- Abstract summary: A base station identifies efficient multi-antenna transmission strategies only with imperfect channel state information (CSI) and its features.
We propose a robust training algorithm where a deep neural network (DNN) is optimized to fit to real-world propagation environment.
- Score: 14.429561340880074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a learning solution for robust beamforming
optimization in downlink multi-user systems. A base station (BS) identifies
efficient multi-antenna transmission strategies only with imperfect channel
state information (CSI) and its stochastic features. To this end, we propose a
robust training algorithm where a deep neural network (DNN), which only accepts
estimates and statistical knowledge of the perfect CSI, is optimized to fit to
real-world propagation environment. Consequently, the trained DNN can provide
efficient robust beamforming solutions based only on imperfect observations of
the actual CSI. Numerical results validate the advantages of the proposed
learning approach compared to conventional schemes.
Related papers
- Distributed Noncoherent Joint Transmission Based on Multi-Agent Reinforcement Learning for Dense Small Cell MISO Systems [8.146481327854545]
We consider a dense small cell (DSC) network where multi-antenna small cell base stations (SBSs) transmit data over a shared band.
arXiv Detail & Related papers (2024-08-22T02:11:14Z) - Learnable Digital Twin for Efficient Wireless Network Evaluation [40.829275623191656]
Network digital twins (NDTs) facilitate the estimation of key performance indicators (KPIs) before physically implementing a network.
In this paper, we propose a learning-based NDT for network simulators.
arXiv Detail & Related papers (2023-06-11T03:43:39Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - On the Effective Usage of Priors in RSS-based Localization [56.68864078417909]
We propose a Received Signal Strength (RSS) fingerprint and convolutional neural network-based algorithm, LocUNet.
In this paper, we study the localization problem in dense urban settings.
We first recognize LocUNet's ability to learn the underlying prior distribution of the Rx position or Rx and transmitter (Tx) association preferences from the training data, and attribute its high performance to these.
arXiv Detail & Related papers (2022-11-28T00:31:02Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - R-FORCE: Robust Learning for Random Recurrent Neural Networks [6.285241353736006]
We propose a robust training method to enhance robustness of RRNN.
FORCE learning approach was shown to be applicable even for the challenging task of target-learning.
Our experiments indicate that R-FORCE facilitates significantly more stable and accurate target-learning for a wide class of RRNN.
arXiv Detail & Related papers (2020-03-25T22:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.